
CARAT KOP: Towards Protecting the Core HPC 
Kernel from Linux Kernel Modules
Thomas Filipiuk, Nick Wanninger, Nadharm Dhiantravan, Carson H Surmeier, Alex Bernat, Peter Dinda

11/12/23 1



CARAT KOP: Towards Protecting the Core 
HPC Kernel from Linux Kernel Modules

2

Thomas Filipiuk1, Nick Wanninger1, Nadharm Dhiantravan1, Carson H Surmeier1, Alex Bernat2, Peter Dinda1

Northwestern University1, Harvard University2



3

Applications and Runtimes can be 
accelerated with custom extensions 

to the operating system



4

IHK/MCKernel

Palacios + Kitten

Argo NodeOS

Nautilus/Multiverse



5

What if you could extend Linux 
with these extensions? 



6

A custom exception handler accelerates FPVM1

1. FPVM: Towards a Floating Point Virtual Machine. HPDC 2022



7

A custom exception handler accelerates FPVM1

1. FPVM: Towards a Floating Point Virtual Machine. HPDC 2022

>50% reduction 
in runtime when 
virtualizing 
floating point in 
SIGFPE 
handlers

Left = Better



8

Custom timer delivery accelerates 
Heartbeat1 scheduling

A thread scheduler for irregular workloads

A custom kernel module for timer 
interrupts instead of signals 

lowers delivery overhead by 3-4x

(Recently accepted to ASPLOS’24)

1. Mike Rainey, Ryan R. Newton, Kyle Hale, Nikos Hardavellas, Simone Campanoni, Peter Dinda, and Umut 
A. Acar. 2021. Task Parallel Assembly Language for Uncompromising Parallelism. PLDI 2021



So Linux kernel modules can accelerate 
your applications or runtimes!

Why isn’t everyone doing this?

9



Unfortunately…

Vendors really don’t like you inserting kernel modules

10



11

Why?

No hardware protections!
(the module can just turn them off)

Unrestricted access to all of 
physical memory (+MMIO)
(The module can just rewrite the page tables)

Crashes, Data Corruption
(A bug in the module can bring the whole kernel down. 
No isolation)



What if Linux could be safely extended 
with kernel modules?

12



Can Linux be extended with policies that 
dictate what a kernel module can and 

cannot access?

13

Further…



14

For example…



Here’s the trouble

15

How can the sysadmin be sure it is 
safe?

Who is going to audit all the code in 
the module?

What if the module has a hidden bug 
that you can’t easily see?



16

For example…

The rest of the kernel should be 
protected from this module



17

For example…
A network driver 

should not be able 
to change my user id 

to root!



18

Extendable with 
Software Policies

Arbitrary Granularity 
Memory protection

To be Fully 
Automatic

Such a protection mechanism needs…



CARAT KOP

19

Compiler And Runtime 
Address Translation

Kernel Object Protection



CARAT KOP

20

Compiler And Runtime 
Address Translation

Kernel Object Protection



21

Application Binary

TLB

So
ftw

ar
e

H
ar

dw
ar

e

CACHE

MEMORY

Application Binary

CARAT RUNTIME

So
ftw

ar
e

H
ar

dw
ar

e CACHE

MEMORY

CARAT

CARAT: Compiler- And Runtime-based Address Translation1,2

1. Suchy et. al. CARAT: a case for virtual memory through compiler- and runtime-based address translation. PLDI 2022
2. Suchy et. al. CARAT CAKE: replacing paging via compiler/kernel cooperation. ASPLOS '22



22

CARAT replaces paging with a 
series of capabilities

Memory Protections
Allocation movement

Access pattern tracking



23

CARAT replaces paging with a 
series of capabilities

Memory Protections
Allocation movement

Access pattern tracking

We focus on just this



24

CARAT inserts guards around untrusted memory access 

* big simplification



25

We experimented 
with a full-system 
designed around 

CARAT

1. Suchy et. al. CARAT CAKE: replacing paging via compiler/kernel cooperation. ASPLOS '22

In this work, we 
investigate applying 

CARAT to linux



CARAT KOP

26

Compiler And Runtime 
Address Translation

Kernel Object Protection



27

Kernel Object 
Protection

Allow a policy to dictate 
memory access - 
independent of hardware 
protections Require that untrusted 

kernel modules are 
compiled with CARAT, 
ensuring it adheres to this 
policy.



28

We aren’t sure what this policy 
should look like yet.



29

A network driver 
should not be able 

to change my user id 
to root!

Maybe a policy looks like this?



30

This notion of guarding 
memory access at any 
granularity is enough to run 
any memory policy.



31

Our CARAT KOP Prototype is broken into three parts

A userspace program to 
configure the policy.

A module that 
enforces the 

policy

And an “untrusted” 
module which the 
policy is enforced 
upon



32

The policy is enforced by calls to

carat_guard()



33



34



35

So what’s the performance like?



36

Unfortunately, we don’t have access 
to one of these right now…



37

As a proof of concept, 
we instead applied 
CARAT KOP to an 

unmodified e1000e driver

It’s not a trivial driver - around 20k loc

Instead…



Compiling the kernel module is easy

38



39

D
ow

n = B
etter

2.5% 
slowdown in 
the worst 
case!



We sweeped the complexity of the 
policy to determine its effect

40

RIGHT = BETTER

What’s important: 
They are all bundled 
together



Conclusion

41



42

CARAT KOP allows Linux to enforce a 
software policy to the memory 

accesses in an unmodified kernel 
module

With low overhead (~2.5%)



Outstanding Questions

● What should these policies look like?
○ CARAT KOP allows any policy, it’s just code

● What should happen when a module violates a policy?
○ Currently, we halt the kernel

● Should different modules have different policies?
● How do we validate that a module was correctly compiled with 

CARAT?
○ We built code-signing for CARAT CAKE

● Does CARAT KOP extend to other modules?

43



Thank you!

44

Thomas Filipiuk, Nick Wanninger, Nadharm Dhiantravan, Carson H Surmeier, Alex Bernat, Peter Dinda

Contact: ncw@u.northwestern.edu


