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Abstract—Extreme degree of panllzhsm ) h:gh end co
puting requires low operating system noise so that large scale,
bulk-synchronous parallel applications can be ron efficiently.
Noiseless execution has been historically achieved by deploying
lightweight kernels (LWK), which, on the other hand, can
Brovide ouly » e set of the POSIX API in exchange for
However, the increasing prevalence of more complex
lpplluuon comeirmeiy suck 24 i gualyls and woektorw
composition, dictates the need for the rich programming Al
of POSIX/Linux. In order to comply with these smmngJ
contradictory requirements, hybrid kernels, where Linux and
a lightweight kernel (LWK) are run side-by-side on compute
nodes, have been recently recognized as a promising approach.
Although multiple research projects are now pursuing this
direction, the questions of how node resources are
between the two types of kernels, how exactly the two kernels
interact with each other and to what extent they are integrated,
remain subjects of ongoing debate.

er, we describe IHK/McKernel, a hybrid software
stack that seamlessly blends an LWK with Linux by selectively
offfoading system services from the lightweight kernel to Linux.
Specifically, we are focusing on transparent reuse of Linux
device drivers and detail i our lramework um
enables the LWK to naturally leverage the Linux drive
base without sacrificing scalability or the POSIX APL 'l'hmugh
rigorous evaluation on a medium size cluster we demonstrate
how McKernel provides consistent, isolated performance for
simulations even in face of competing, in-situ workloads.

; hybrid kernels; lightwei -
nels' rysle_m ‘call offioading; scalabilty

L. INTRODUCTION

With the growing complexity of high-end supercomputers,
it has become indisputable that the current system software
stack will face significant challenges as we look forward
to exascale and beyond. The necessity to deal with ex-
treme degree of parallelism, heterogencous architectures,
multiple levels of memory hierarchy, power constraints,
etc. advocates operating systems that can rapidly adapt to
new hardware requirements, and that can support novel
programming paradigms and runtime systems. On the other
hand, a new class of more dynamic and complex applications
are also on the horizon, with an increasing demand for
application constructs such as in-situ analysis, workflows,
elaborate monitoring and performance tools [1], [2]. This
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complexity relies not only on rich features of POSIX, but
also on the Linux APIs (such as the /proc, /sys filesystems,
etc.) in particular.

Traditionally, lightweight operating systems specialized
for HPC followed two approaches to tackle the high degree
of parallelism so that scalable performance for bulk syn-
chronous applications can be delivered. In the full weight
kemel (FWK) approach [3], [4], [5], a full Linux environ-
ment is taken as the basis, and features that inhibit attaining
HPC scalability are removed, i.c., making it lightweight. The
pure lightweight kernel (LWK) approach [6], (7], [8], on the
other hand, starts from scratch and effort is undertaken to
add sufficient functionality so that it provides a familiar API,
typically something close to that of a general purpose OS,
while at the same time it retains the desired scalability and
reliability attributes. Neither of these approaches yields a
fully Linux compatible environment.

An alternative hybrid approach recognized recently by the
system software community is to run Linux simultancously
with a lightweight kemel on compute nodes and multiple
research projects are now pursuing this direction [9], [10],
[11], [12]. The basic idea is that simulations run on an
HPC tailored lightweight kemel, ensuring the necessary
solation for noiseless execution of parallel applications,
but Linux is leveraged so that the full POSIX API is
supported. Additionally, the small code base of the LWK
can also facilitate rapid prototyping for new, exotic hardware
features [13], [14], [15]. Nevertheless, the questions of how
to share node resources between the two types of kernels,
where do device drivers execute, how exactly do the two
kemels interact with cach other and to what extent are they
integrated, remain subjects of ongoing debate.

Figure 1 illustrates the hybrid/specialized LWK landscape
highlighting kernel level workload isolation, reusability of
Linux device drivers, and necessary Linux kemel modifi-
cations. It is worth emphasizing that modifications to the
Linux kernel are highly undesired since Linux is a rapidly
evolving target and keeping patches up-to-date with the latest
kemel can pose a major challenge. Generally, the left side
of the figure represents tight integration between Linux and
the LWK, while progressing to the right gradually enforces
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Abstract—Palacios open-source VMM under de-

selapuacnt ot Noethwestern Diveesity s the Unlversty of

New Mexico that enables applications executing in a

environment to achieve sealable high performance on lalgz ma-

chines.Palclosfunctonsas  modularied extension to Kitten,
h

« providing access to advanced virtualization featurcs

such as migration, full system checkpointing, and de-

bugging;

allowing system owners to support a wider range of

aprplicauons and to more easily support legacy appli-
tions an models when changing the

Nsllonal thanmrles to support large-scale
ether, Palacios and Kitten provide a thin layer
o e o appct Pl iakare ptusirod oo
‘ments alongside Kitten’s lightweight native environment. Pala-
ing, unmodified applications and operating
systems by using the hardware virtualization technologies in
recent AMD an ke rocemers. Adiionsly, Placls eve
225 Kittn's simple memmory mansgement scheme to ensble
low-overhead pass-through of native devices to a virtuali
cvironencet, W describe the. desgn, implementation, s
integration of Palacios and Kitten. Our benchmarks show that
Palacios provides near native (within 5%), scalable perfor-
mance for virtsallzed environments running important paralel
ppl new architecture provi
th for lppl.lcllmns to use

und:rlymg hardware platform;
enabling system users to incrementally port their codes
from small-scale development systems to large-scale
supercomputer systems while carefully balancing their
performance and system software service requirements
with application porting effort; and

providing system hardware and software architects with
a platform for exploring hardware and system software
enhancements without disrupting other applications.

Palacios is a “type-I” pure VMM [1] under development at

md Vightveight host operating sstems, thatis ot smmﬁunzly
formance-compror

Keywords-virtual machine _monitors; hghlwmghl Kernels;
paralel computing; high performance computing

1. INTRODUCTION

University and the University of New Mexico
that provides the ability to virtualize existing, unmodified
applications and their operating systems with no porting.
Palacios is designed to be embeddable into other operating
systems, and has been embedded in two so far, including Kit-
ten. Palacios makes extensive, non-optional use of hardware
virtualization technologies and thus can scale with improved.
of those

‘This paper introduces Palacios, a new high
virtual machine monitor (VMM) architecture, that has been
embedded into Kitten, a high performance supercomputing
operating system (OS). Together, Palacios and Kitten pro-
vide a flexible, high performance virtualized system software
platform for HPC systems. This platform broadens  the
applicability and usability of HPC systems by:

“This project is made possible by support from the National Science Foun-
daton (NS via grais CNS-07091 63, CNS-0707365, an e, Depur
of Energy (DOE) via a subcontract fror National Laboratory

United States Department of Energy’s National Nuclear Security Adumiis-
ration under contract DE-ACO4-94AL8S000,

978-1-4244-6443-2/10/526.00 ©2010 IEEE

Kitien is an OS being developed at Sandia National
Laboratories that is being used to investigate system software
techniques for better leveraging multicore processors and
hardware virtualization in the context of capability super-
computers. Kitten is designed in the spirit of lightweight
kernels (2], such as Sandia’s Catamount [3] and IBM’s

CNK [4], that are well known to perform better than
commodity kemels for HPC. The simple framework pro-
vided by Kitten and other lightweight kemnels facilitates
experimentation, has led to novel techniques for reducing
the memory bandwidth requirements of intra-node message
passing [5], and is being used to explore system-level options.
for improving resiliency to hardware faults.
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thousands of compute nodes with hundreds of hardwas
ind complos memery, Hierarcics with a mix of onpackage and
persistent memory m

In this context, the Argo projectis developing a new operating
system for exascale machines. Targeting production workloads
using workflows or coupled codes, we improve the Linux kernel
on several fronts. We extend the memory management of Linux
o be able o subdlivide NUMA memory nodes, allowing betier
resource partit
e alo add support for, memory-mapoed scss (o odelocal

taieriztion products, weals denty conentons
the adoption of containers in HPC se

Tack Nede(}8 fetors o crabmried b g ok of parell
benchmarks, miniapps, and coupled applications consisting of
simulation and data analysis components, running on a modern
NUMA platform. We observe out-of-the-box performance im-
provements easily matching, and often exceeding, those observed
ith capert-optimized confgurations on standard OS kernels.
Our lightweight approach to
many benchts of  fall OS kernel that
Jave learned 0 depend om ¢ (e come Hme providing a set o{

n be freely mixed and matched to best benefi

Pardcar npplu.uon components.

1. INTRODUCTION
Exascale systems are expected (o feature hundreds of thou-
sands of compute nodes with hundreds of hardware threads
and complex memory hierarchies with a mix of on-package
and persistent memory modules. The Intemational Exascale
Software Project [1] identified a number of challenges that
need to be addressed on such systems. On the operating
system (OS) side, the roadmap advocates that interfaces and
support for new types of memory must be developed. Ad-
ditionally, OS software should provide explicit control, from
user space, of the resources available on the compute nodes.
At the runtime level, parallel languages should transition
from straightforward fork-join_parallelism to-asynchronous
overdecomposed approaches, with architecture- and topology-
aware load balancing performed by the runtime itself.
Following this roadmap, we argue that the role of a
multitasking OS is transitioning from managing access to

shared resources on the node (CPU, memory, NIC, etc.) using
multiplexing techniques such as time sharing and swapping,
which may be disruptive to many HPC workloads, to coarsely
partitioning those numerous resources and bundling them
together in an integrated fashion through a unified interface—
containers. Lightweight runtimes [2], [3], forming part of
comprehensive parallel programming frameworks, will then
be given exclusive control of resources to perform custom
redistribution according to their knowledge of the application
and its inner parallelism. Such an approach ensures a more
deterministic execution and noticeably lower overheads.

Furthermore, the increasing resource density on HPC nodes,
combined with the growing relative cost of internode com-
‘munication, provides a strong motivation for new kinds of
HPC applications. Increasingly, a single job consists of a
computation component with  data analytics or visualization
component running alongside it. Care must be taken to ensure.
that such coupled components, which can have very different
requirements for uilizing node resources or system services,
actually benefit from running in close proximity to each
other instead of grinding to a halt because of unintended
interference.

A. Example Workload

Gromacs.
(MP1job)

Compute Node

(standalone

processes)

Compute Node

Fig. 1: Process interaction of a coupled application.

Figure 1 presents an overview of a complex application
workflow and the interaction between it processes. The sim-
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Abstract—The bybrid runtime (HRT) model offers a path
towards bigh performance and efficenc. B inegrain the O
kernel, runtime, and application, an HRT allows the runtime
developer o Ieverage the ull feaure st of the hardware and
specialize OS services to the runtime’s needs. However, conform-
ng to the HRC model currently requires  por of he runtime o
the kernel level, for example to the Nautilus kernel framework,
and this requires knowledge of Kernel internals. In response, we
developed Mltvrse,  sysiem that bridgs the gap between 0
a legacy

ARt eamanhe, et S skt o 12 Broughe
the HRT model without any porting effort whatsoever by splitting
the exccution of the applicton befween the

08 and ribe

etk of M a1 gt e ope At s
the massive, widely-used Racket runtime system.

1. INTRODUCTION

Runtime systems can gain significant benefits from execut-
ing in a tailored software environment, such as our Hybrid
Runtime (HKT) (18 Inan HRT, & lgh weght krnel e
work (called an AeroKemel), a and an application
mxl:xcc into a single kemel el ety The 08 s this
of the application, runtime, and AeroKermel. As
ch, the e and application enjoy a base platform of
fully privileged access to the underlying hardware, and can
also construct task-appropriate. abstractions on top of this
base, instead of being limited to abstractions provided by
‘commodity OS. These capabilities demonstrably enhance per-
formance, scalability, and efficiency, particularly for parallel
runime sysems uning on curent
next_generation high core-count multicore processors.
The capabiiie o cnébl fomn of adaptation, both during
the design process and during execution, that are simply not
available to user-level systems
An AeroKemel facilitates the creation of HRTs by providing
core kel functionality and optional mechanisms whose
interfaces are geared to user-level developers instead of kemel
developers. An AeroKernel helps ease the migration of user-
level code to kemel-level. The motivation for an Acrol
draws fom. the relisble performance of lght-weight k-
nels [22], [21], [16], the philosophy regarding kernel abstrac-
tions of Exokemel [12], new techniques and ideas developed
in muli-core OS research [23], [13], and the simpliity of
other experimental OSes from previous decades [20], [28]. Tn
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this paper, we leverage the Nautilus AeroKernel [17], which
we describe in more detail in Section IL

Prior to the work and system we describe here, the im-
plementation of an HRT consisted entirely of manual pro-
cesses. HRT developers needed first to extend an AeroKemel
framework such as Nautilus with the functionality the runtime
needed. The HRT developers would then port the runtime
o this AeroKernel manually. While a manual port can pro-
duce the highest performance gains, it requires an intimate
familty with the e systen's functona equirements,

h may not be obvious. These requirements must then
be implemented in the AeroKernel layer and the AeroKemel
and runtime combined. This requires a deep understanding
of kemel development. This manual process is also iterative:
the developer adds AeroKernel functionality until the runtime
works correetly. The end result might be that the AcroKemel
interfaces support a small subset of POSIX, or that the runtime
developer replaces such functionality with custom interfaces.

‘While such a development model is tractable ([17) gives
three examples), it represents a substantial barrier (o entry to
creating HRTs, which we seek here to lower. The manual port-
ing method is additive in its nature. We must add functionality
until we arrive at a working system. A more expedicnt method
would allow us o start with a working HRT produced by
an automatic process, and then incrementally extend it and
specialize it to enhance its performance.

‘The Multiverse system we describe in this paper supports
such a method using a technique called automatic hybridiza-
fion 10 create a working HRT from an cxisting, unmodified
runtime and application. With Multiverse, runtime developers
can take an incremental path towards adapting their systems
to run in the HRT model. From the user's perspective, a
hybridized runtime and application behaves the same as
original. It can be run from a Linux command line and interact
with the user just like any other executable. But intemally, it
exceutes in kemel mode as an HRT.

Whie in s paper we prsent one instance of an Acroer.
nel, Multiverse can work with any AeroKernel (or specialized
0S kemel). Such pairings ouldcnsle new o o adaptive
computing, both in datacenter and HPC environments. For
example, hybridization decisions could be made at runtime to

an application or runtime system with the most suitable
specialized OS kemel in response o, e.g. application charac-

Sookiier
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What if you could extend Linux
with these extensions?
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Custom timer delivery accelerates
Heartbeat’ scheduling

A thread scheduler for irregular workloads

A custom kernel module for timer
interrupts instead of signals

(Recently accepted to ASPLOS’24)
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So Linux kernel modules can accelerate
your applications or runtimes!

Why isn’t everyone doing this?



Unfortunately...

Vendors really don't like you inserting kernel modules

10



Why?

No hardware protections!

(the module can just turn them off)
Unrestricted access to all of

physical memory (+MMIO)

(The module can just rewrite the page tables)

Crashes, Data Corruption

(A bug in the module can bring the whole kernel down.
No isolation)

11



What if

could be extended
with kernel modules?
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Further...

Can Linux be extended with that
dictate what a kernel module can and
cannot access?
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For example...
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struct ib_cq *cq = container_of (iop, struct ib_cd: iop)s
struct dim *dim = cg->dim;

int completed;

completed = __ib_process_

cqlcq, budget, ca->we. 1B_POLL_BATCH):

if (completed < budget) {
irq,poll_complete(&cq—>iop);
if (ib_req_notifyAcq(cq, IB_POLL_FLAGS) > 0) {
trace_cq_reschedule(cq]
irq_poll_sched(sca->i0P);

1
}

if (dim)

rdma_dim(dim, completed);

return completed;

¥
static void ib,cq_completi

trace_cq,schedule(cq);
irq_poll_sched(&ca—>10p)
B

static void ib_cal

{
int completed;

completed = __ib_proc
IB_POLL_BAT
if (completed >= I8!
ibAreq,notifv,cq(
queue,wcrk(cq—>comp
else if (cg->dim)
rdma_dim(cg->dim,

¥
static void ib_cq_comp
trace_cq_schedule(cq]

queue,work(cq—nomp_w

3

softirg(struct ib_cq *cq, void *priva

poll_work(struct work_struct *work)

struct ib_cq *ca = container_of(work‘ struct ib_cd, work) ;

struct ib_cd *ib»cq;pool,get(struct ib_
int ccmp<vector,hint,
enum ib,pou_context poll_ct

static unsigned int default_comp_vect
unsigned int vector. num_comp_vectors
struct ib_cq *cd. xfound = NULL:

int ret;

if (poll_ctx > IBAPOLL,LAST_P00L<TYPE‘
WARN_ON_ONCE(poll,ctx > IB_POLL_LAS
return ERR,PTR(—EINVAL):

}

num,ccmp,vectcrs =
min_t(unsigned int, dev->num_comp_V

if (comp,vector{hint <o) {
comp,vector,hint =
(READ<0NCE(default,ccmp,vector) +
WRITE_ONCE(default,comp,vector‘ conm

¥

vector = comp,vector_hint % num_comp._

whitle (!found) {
spin_1ockAirq(&dev—>cq_pools_1ock):
list,for‘,each<entr‘y(cqW &dev->cq_poo
pco\,entrv) {

if (vector != cq—)comp_vector)
continue;

struct Tist_head ~d_List;
enum ib_gid_type xdefault_gid_type:
ud -kdefau'Lt,roce,tos;

struct rdma_bind_list {
enum r‘dma,ucm,port_space pss
struct hlist_head owners;
unsigned short port;

i

static int cmaAps_alloc(struct net *net, enum rdma_ucm_port_space pS.

struct rdma_bind_list #bind_list, int snum)
struct xarray *xa = cma<pernet,xa(net, ps)s

return xa_insert(xa, snum, pind_list, GFP_KERNEL

3

static struct rdma_bind_list *cma_ps,f'\nd(struct net *net,
enum rdma_ucm_port_space ps. int snum)

truct xarray *xa = cma_pernet,xa(nen ps)s

return xa_load(xa, snum) §
¥
static void cma,ps_remove(struct net *net, enum rdma,ucm,port,space pS.
int snum)

struct xarray *xa = cma_pernet,xa(net, ps)s

xa_erase(xa, snu

enum {
CMA_OPTION_AFONLY,
X

void cma,dev,get(struct cma_device *cma_dev)

refcount_inc (&cma,dev—>refcount) &

H
void cma,dev,put(str‘uct cma_device *cma_dev)
Adec_and_test(&cma,dev—wefcount))

cma_dev->comp):

struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,

void xcookie)

'Ls[poll,ctx]1

if (cq—>cqe_used + nr_cqge > cq—>cqe)

continue;
found = cq;
break;




|: I e struct ib_cq *cq = container_of (iop, struct ib_cd: iop)s
struct dim *dim = cg->dim;
int completed;

completed = __ib_process_cqlcd, budget, ca->We, 18_POLL_BATCH):
if (completed < budget) {
irq,pcll_complete(&cq—>iop);

struct Tist_head ~d_List;
g : k- E .
1f Cib_req_no i IB_POLL,FLAGS) >0 { enum ib_gid_type default_gid_type:
ud *default,roce,tos;
trace_cq_resch

H .
ow?can the sysadmin be sure it is

return completed:
1 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space pS.

struct rdma_bind_list #bind_list, int snum)

struct rdma_bind_list {
enum rdma,ucm,port_space pss
struct hlist_head owners;
unsigned short port;

i

static void ib,cq_completion_softirq(struct ib_cq *cq, void *priva
struct xarray *xa = cma_pernet,xa(net, ps)s
trace_cq,schedule(cq);
1.~q_pom1,sched(&cq—>iop) s
3 3

return xa_insert(xa, snum, pind_list, GFP_KERNEL):

2tat‘° void 1b_cq,p011_work(struct work_struct *work) static struct rdma_bind_list *cma_ps_find(struct net *net,
3 p P & t. i
struct ib_cq *cd = container_of (work, struct ib_cq. work): enum rdna_ucn_port_space P int snum)

Who is going to audi
it all the ¢ '
the module? oden

What if the module has a hi

dden bu
that you can’t easily see? ;

int completed;

completed = __ib_proc
IB_POLL_BA
if (completed >= I8!
ibAreq,notifv,cq(
queue,wcrk(cq—>comp
else if (cg->dim)
rdma,dim(cq—>dim,

¥
static void ib_cq_comp
trace_cq_schedule(cq]

queue,work(cq—>comp_w

3

struct ib_cd *ib»cq;pool,get(struct ib_
int ccmp_vector,hint,
enum ib,po\l_context poll_c

static unsigned int default_comp_vect
unsigned int vector. num_comp_vectors
struct ib_cq *cd. xfound = NULL:

int ret;

if (poll_ctx > IB_POLL,LAST_PO0L<TYPE‘
WARN_ON_ONCE(pOlI,Ctx > IB_POLL_LAS
return ERR_PTRC-EINVAL):

}

num,comp,vectcrs =
min_t(unsigned int, dev->num_comp_V

if (compgvector<hint <o) {
comp,vector,hint =
(READ<0NCE(default,comp,vector) +
WRITE_ONCE(default,comp,vector1 com
¥

vector = comp,vector_hint % num_comp_

whitle (!found) {
spin_lockAirq(&dev—>cq_pools_1ock):

Iist,for,each_entry(cq, &dev->cq_poo

pcol,entrv) {

if (vector != cq—)comp_vector)
continue;

truct xarray *xa = cma_pernet,xa(net, ps)s

return xa_load(xa, snum) §

static void cma,ps_remove(struct net *net,

int snum)
struct xarray *xa =

xa_erase(xa, sn

enum {
CMA_OPTXON_AFONLY,
X

void cma,dev,get(struct cma_device *cCi

enul

cma_pernet,xa(net1 ps)s

refcount_inc(&cma,dev—>refcount);

i

void cma_dev_put(struc

1if (refcount_dec_an

d_test(&cma,dev—>refcou

complete(&cma{dev—>comp);

i

struct cma_device *cma_enum_devices_by_ib

void

1s[poll_ct

if (cq—>cqe_used + nr_cqge > cq—>cqe)

continue;
found = cq;
break;

xcookie)

ma_dev)

t cma_device *cma_dev)

dev(cma_device_filter

m rdma,ucm,port,space pPS.

nt))

filter,




struct dim *dim =
int completed;

IJ I e H H B { i i i g w i
struct ib_cq *cd = container‘,of[icp, struct ib_cd, iop)s
1 im = co->dim;

budget, ca->We, 18_POLL_BATCH):
struct 118 ead 1d_Ll1S

dget) {
) enum ib_gid_type *default gid_type;
*xdefault_roce_ tos;

{ib_process_ cqlca,

completed = _—
if (completed < bu

enum rdma_ucm_port_space

[ struct net *net,
int snum)

ist *bind_list,

na_pernet,xa(net, ps)s

lsnum ., pind_list. GFP_KERNEL):

struct net *net,

|_1list *cma_ps- find(
int snum)

icm_port_ space PS.

o a_pernet,xa(net, ps)s

hum) 5

num rdma,ucm,port,space

love(struct net *net, el

The rest of the kernel should be
protected from this module

cma_pernet,xa(net1 ps)s

ct cma_device *cma_dev)

dev—>refcount);
luct cma_device *cma_dev)

ma_dev— >refcount))

cma_enum_devices_by_ibdev(cma_device_filter filter,

xcookie)

cq—)comp_vector)

if (vector
continue;

if (cq—>cqe_used +n
continue;

found = cq;

break;

r_cage > cg->cqe)
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For exa

to change my userid °

A network driver
should not be able

to root!
= e : \;
BREBR E
\
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Such a protection mechanism needs...

To be Fully
Automatic
Arbitrary Granularity
Memory protection
Extendable with

Software Policies
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CARAT KOP

e

Compiler And Runtime
Address Translation

Kernel Object Protection
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e

Compiler And Runtime
Address Translation

CARAT|KOP

Kernel Object Protection
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1.
2.

CARAT: Compiler- And Runtime-based Address Translation'?

-

Application Binary

~

Application Binary

[ 1

= —

. - &

CARAT RUNTIME

|

|

CACHE [ CACHE
MEMORY [ MEMORY

|

Suchy et. al. CARAT CAKE: replacing paging via compiler/kernel cooperation. ASPLOS '22

Suchy et. al. CARAT: a case for virtual memory through compiler- and runtime-based address translation. PLDI 2022
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CARAT replaces paging with a
series of capabilities

Memory Protections _
Allocation movement

Access pattern tracking
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CARAT replaces paging with a
series of capabilities

Memory Protections

Allocation movement

We focus on just this

Access pattern tracking
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CARAT inserts guards around untrusted memory access

struct ib_cqg *cq:
int ret = —-ENOMEM;

cq = rdma_zalloc_drv_obj(dev, ib_cq);

if (leq)
return ERR_PTR(ret):

cg->device = dev:
cg->cq_context = private;
cq—->poll_ctx = poll_ctx;
atomic_set(&cq—->usecnt, 0);

cqg—>comp_vector = comp_vector;

struct ib_cq *cq:
int ret = -ENOMEM;

cq = rdma_zalloc_drv_obj(dev, ib_cq):

if (!cq)

return ERR_PTR(ret):
carat_guard(cq):
cg->device = dev;
cg->cq_context = private:
cq—->poll_ctx = poll_ctx;
atomic_set(&cg->usecnt, 0);

cq->comp_vector = comp_vector:

* big simplification

24



We experimented
with a full-system

designhed around
CARAT

In this work, we
investigate applyin
CARAT to linux
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even supporting purely physical addressing. While we have made
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tion (CARAT) concept, its evaluation was based on a user-level
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plementation, a Linux-compatible x64 process abstraction can be
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mentation. Implementing CARAT CAKE involves kernel changes
and compiler optimiz
code in the system, including kernel code. We evaluate CARAT
CAKE in comparison with paging and find that CARAT CAKE is
able to achieve the functionality of paging (protection, mapping,
and movement properties) with minimal overhead. In turn, CARAT
CAKE allows significant new benefits for systems including en-
ergy savings, larger L1 caches, and arbitrary granularity memory
management.
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1 INTRODUCTION

Virtual memory, specifically address translation implemented with
paging, is deeply embedded in today’s systems at all levels, but par-
ticularly within the hardware and the kernel. As we have known
since the 1960s [50], virtual memory solves numerous problems.
This includes providing a simplifying memory abstraction for pro-
grammers, protecting the kernel from processes and proces
each other, and extending physical address space via swapping
to/from storage. Its most popular form, paging, also provides a
natural unit for memory management.

Unfortunately, paging' is not without cost. Paging requires hard-
ware/software codesign spanning the hardware directly on the
access path to main memory and the deepest levels of the kernel.
The hardware structures supporting the traditional address trans-
lation model (per-core DTLBs, ITLBs, STLBs, separate structures
for different page sizes, nested TLBs, quad pagewalkers, walker

es from

! And its kissing cousin, segmentation.



CARAT|KOP

e

Compiler And Runtime Kernel Object Protection
Address Translation
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Allow a

Kernel Object
Protection

to dictate

memory access -
independent of hardware

protections

Require that untrusted
kernel modules are
compiled with CARAT,
ensuring it adheres to this
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We aren’t sure what this policy
should look like yet.
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Maybe a policy looks like this?

A network driver
should not be able |
to change my user id <
to root!
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This notion of guarding
memory access at any
granularity is enough to run
any memory policy.
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Our CARAT KOP Prototype is broken into three parts

A module that
enforces the

policy

A userspace program to
configure the policy.

Userspace

User Space App

CARAT KOP
Policy Module

CARAT KOP
Protected Module

sed on policy*

Kernel

And an “untrusted”
module which the

policy is enforced
upon

31



The is enforced by calls to

carat_guard()

Userspace

User Space App

Policy (ioctl /dev/carat)

CARAT KOP > [ CARAT KOP
Policy Module |callto guardl drotected Module

Access is determined based on policy

Kernel
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struct ib_cq *cq:
int ret = —-ENOMEM:

cq = rdma_zalloc_drv_obj(dev, ib_cq):
it Cleg)

madiimm DD nannqt).
AN L

carat_guard(cq):

cg=sdevice = Jdevy
cg->cq_context = private;
cq->poll_ctx = poll_ctx;
atomic_set(&cq->usecnt, 0):
cq->comp_vector = comp_vector;

33



memory_region_t *restricted_regions:
void carat_guard(void *ptr) {
for (long 1 = 0; 1 < region_count; i++) {
if (contains(restricted_regions[i], ptr) {
printk("No permission to access!\n"):
abort():

34



So what’s the performance like?
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00000 OO

Unfortunately, we don’t have access
to one of these right now...
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Instead...

As a proof of concept,
we instead applied

CARAT KOP to an
unmodified e1000e driver

It’s not a trivial driver - around 20k loc
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Compiling the kernel module is easy

obi-m += e1000e.o0
ccflags—-y := —Xclang —-fpass—plugin=$(PWD)/pass/build/CaratKop.so
eluuue-objs := 8Z57/1.0 1chdlan.o duuuseszZlan.o \

mac.o manage.o nvm.o phy.o \

param.o ethtool.o netdev.o ptp.o

aLL:
make -C $(LINUX) M=$(PWD) modules

38



2.5%

slowdown in
the worst
case!
1025 7 ./.
./ \.
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We sweeped the complexity of the
policy to determine its effect

CDF

RIGHT = BETTER

N\

What’s important:

>
100%
technique
80% 1 —— carat
caratlo
60% A
> | — carat64
40% 4+ —— baseline
20% A
O% I I I 1 1
90k 100k 110k 120k 130k

Packets per second

They are all bundled
together
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Conclusion
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CARAT KOP allows Linux to enforce a

software to the memory
accesses in an unmodified kernel
module

With low overhead (~2.5%)
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Outstanding Questions

e \What should these policies look like?
o CARAT KOP allows any policy, it's just code

e \What should happen when a module violates a policy?
o Currently, we halt the kernel

e Should different modules have different policies?

e How do we validate that a module was correctly compiled with

CARAT?

o We built code-signing for CARAT CAKE
e Does CARAT KOP extend to other modules?
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Thank youl!

Contact: ncw@u.northwestern.edu

Thomas Filipiuk, Nick Wanninger, Nadharm Dhiantravan, Carson H Surmeier, Alex Bernat, Peter Dinda
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