
11/16/2023 1

Analysis and Characterization of Performance
Variability for OpenMP Runtime

Minyu Cui, Nikela Papadopoulou, Miquel Pericàs

Chalmers University of Technology

 International Workshop on Runtime and Operating Systems for Supercomputers

2

Presentation Outline

• Introduction and motivation

• Methodology and Experimental Setup

• Experimental Results

• Conclusion & future work

3

Presentation Outline

• Introduction and motivation

• Methodology and Experimental Setup

• Experimental Results

• Conclusion & future work

4

Introduction
 European Processor Initiative (EPI) project is developing

several multicores based on ARM-SVE and RISC-VV1

 OpenMP is the main intra-node programming model
 #pragma omp parallel

 Performance stability is a major concern
 operating system (OS) activities

 contention and interference on shared resources

 random thread delays

 more cores may lead to higher variability

 Our long term goal: tune Linux+OpenMP to reduce the
impact of variability in upcoming EPI multicores

 1st step is to perform a characterization study

thread 0

thread 1

thread 2

thread n

No interference

Interference

synchronize

synchronize

delay

thread 0

thread 1

thread 2

thread n

1 Please visit the EPI-EUPilot-EUPEX booth #213 for more information :-)

5

 Example: LULESH mini-app case study
 Dual socket AMD Zen2 with 128 cores total (256 HW threads)
 What causes increased execution time and/or variability?

Impact of variability on large multicores

128 threads ~256 threads

No thread
pinning with thread

pinning
SMT on 64 cores
(only 1 socket)

With pinning and
background

“logging” thread
SMT with 254 threads

(one idle core)
SMT with 256 threads

(no idle cores)

6

Related work and Goals of our work

 Methodologies to reduce performance variability
 Applying thread-pinning

 Reserving threads for system activities (e.g., daemons, interrupts, …)

 Disable dynamic frequency management

 Kernel-level tools to measure and analyze OS noise
● Lo2s, LTTng-Noise, osnoise

https://hpc-wiki.info/hpc/Lo2s

https://lttng.org/

https://docs.kernel.org/trace/osnoise-tracer.html

7

Presentation Outline

• Introduction and motivation

• Methodology and Experimental Setup

• Experimental Results

• Conclusion & future work

8

Methodology
 Run on production environments, using x86 system as proxies

– no OS-level analysis tools, instead we rely on statistical analysis
– Based on microbenchmarks to evaluate OpenMP constructs
– Evaluate impact of thread pinning, thread mapping (eg SMT), background processes and DVFS

 Thread-pinning
 OMP_NUM_THREADS

 OMP_PLACES

 OMP_PROC_BIND (close)

 Simultaneous multithreading (SMT) + Idle cores
 Leave the extra hardware thread per physical core idle
 Or: leave one core idle for system activities

 Frequency logging on a separate core
 a background Python script to record the frequencies of all cores

9

Experimental setup
 Two hardware platforms

 OpenMP benchmarks - 10 runs for each benchmark
 EPCC OpenMP microbenchmarks v3.0 (schedbench, syncbench) – each with 100 internal repetition

 BabelStream v4.0 (OpenMP)

 Experiment configurations
 ST - at most one hardware thread per physical core is used to run the benchmarks
 MT (on Dardel) - both two hardware threads of the core are used to run the benchmarks

Platform/Attribute Dardel Vera

CPU model AMD EPYC™ 7742 (Zen2) Intel Xeon Gold 6130 (Skylake)

Number of CPU cores 64, 2-way SMT 16, no SMT

Number of NUMA nodes 8 2

Number of processors (sockets) 2 2

Linux distribution SUSE Linux Enterprise Server 15 SP3 OS Rocky Linux release 8.7

Linux kernel version 5.3.18-150300.59.76_11.0.53-
cray_shasta_c

4.18.0

256 logical
cores

32 logical
cores

gcc v7.5.0 gcc v8.5.0

10

Presentation Outline

• Introduction and motivation

• Methodology and Experimental Setup

• Experimental Results

• Conclusion & future work

11

OpenMP scalability
 Scalability of average execution time (usec) after thread-pinning (plots: syncbench)

 More HW threads -> higher average execution time for schedbench and syncbench

 More HW threads -> lower average execution time for BabelStream (shown in paper)

Higher HW thread count -> higher synchronization overheads
Particularly bad across sockets

Dardel Vera

12

OpenMP variability
 Scalability of performance (execution time) variability after thread-pinning on Dardel

Higher HW thread count -> higher performance variability (syncbench + babelstream)
All HW threads -> significantly worse performance stability

schedbench syncbench BabelStream

13

 Syncbench after thread-pinning on Dardel (case study: reduction)
 Lower run-to-run variability

 Lower variations between the 100 internal repetitions

Thread Pinning

Lower performance variability after thread-pinning

Before thread-pinning After thread-pinning

14

Thread mapping and SMT
 MT (on Dardel) - both hardware threads of the core are used to run the benchmarks
 Plots show schedbench with 128 threads, using both sockets in both cases (ST and MT)
 Higher performance variability when using additional threads implemented by SMT to run benchmarks

Leaving the second thread in SMT for system activities results in better performance stability

ST MT

64+64 cores w/ single threading 32+32 cores w/dual threading

15

 Frequency logging on a separate core on Vera
 Schedbench, 16 threads in one socket (left), 16 threads across two sockets (right)

Effects of Frequency Variation

Higher performance variability due to frequency variation on Vera

16

 Frequency logging on a separate core on Vera
 Schedbench, 16 threads in one socket (left), 16 threads across two sockets (right)

Effects of Frequency Variation

Higher performance variability due to frequency variation on Vera

17

Presentation Outline

• Introduction and motivation

• Methodology and Experimental Setup

• Experimental Results

• Conclusion & future work

18

Conclusion

 Experimental study of performance stability for OpenMP runtime on large multicores
 High variability when all resources (all SMT threads are used)

– Leaving one core or the second SMT thread idle considerably reduces variability
– For example, avoid interference from the frequency logger and benchmark running on the same core

 In general, MT showed higher variability compared to ST with same number of threads.
 Frequency scaling drivers seem to add more variability when system is not close to power cap

 Needs to be studied further

 Thread-pinning seems to be in general a good idea

19

Future work

 Correlate larger OpenMP applications with the results of this study
 Other compiler, e.g. LLVM runtime, and different runtime parameters e.g. OMP_WAIT_POLICY or

different reduction algorithms
 Extend analysis to ARM-SVE platforms, in particular A64FX and Graviton3.
 Profiling of OS noise with kernel level tools
 Develop joint Linux+OpenMP methodology to mitigate performance variability in EPI cores

20

Thank you

Any questions?

	Analysis and Characterization of Performance Variability for O
	Presentation Outline
	Presentation Outline (2)
	Introduction
	Motivation : LULESH mini-app (2)
	Methodologies in SoA work
	Presentation Outline (3)
	Methodology
	Experimental setup
	Presentation Outline (4)
	Experimental results - OpenMP scalability
	Experimental results - OpenMP scalability (2)
	Experimental results - thread pinning
	Experimental results - simultaneous multithreading(SMT)
	Experimental results - frequency variation
	Slide 16
	Presentation Outline (5)
	Conclusion
	Future work
	Thank you

