
Copyright © 2023 SambaNova Systems

ROSS 2023: 11/12/2023

Benjamin Glick, Arjun Sabnis, Renate Kempf,
Arnav Goel, Aarti Lalwani, Guoyao Feng, Kiran
Ranganath

RDARuntime: An OS
for AI accelerators

Copyright © 2023 SambaNova Systems

• Intro to RDU and RDA programming

• Related work

• RDARuntime architecture and features

• Experimental analysis

Contents

Copyright © 2023 SambaNova Systems

Why OS for RDU?
It’s Different!

Copyright © 2023 SambaNova Systems

Reconfigurable Dataflow Architecture

• Each chip (RDU) is a checkerboard of
memory and compute resources

+ PCU has vector and scalar compute
operations

+ PMU is a multipurpose scratchpad

+ Switches forward packets across the chip

• The AG/CUs at the edge of the
compute checkerboard mediate off-
chip accesses to memory, host, and
other RDUs

4

Copyright © 2023 SambaNova Systems

Introduction to Reconfigurable Dataflow Architecture

• At compile time, the ML model is
mapped to a physical on-chip
layout making use of compute/
mem/IO resources

• At runtime, the chip is statically
programmed and data flows across
the chip to enable computation

5

Copyright © 2023 SambaNova Systems

Units of Compute
• Each RDU contains N instances of

the RDA, which we call a tile

• Tiles are connected to each other
by an on-chip network

• Each system consists of 8 RDUs and
an x86 based host

• Each chip is connected to its peers
via an internal fabric

• Systems are connected to each
other by 400G Ethernet

Copyright © 2023 SambaNova Systems

Related Work

Copyright © 2023 SambaNova Systems

CUDA Runtime vs RDARuntime

• One device file vs many
device files

• Device firmware vs
kernel driver

• High level APIs

Copyright © 2023 SambaNova Systems

CUDA Runtime vs RDARuntime

• One device file vs many
device files

• Device firmware vs
kernel driver

• High level APIs

Copyright © 2023 SambaNova Systems

CUDA Runtime vs RDARuntime

• One device file vs many
device files

• Device firmware vs
kernel driver

• High level APIs

Copyright © 2023 SambaNova Systems

CUDA Runtime vs RDARuntime

• One device file vs many
device files

• Device firmware vs
kernel driver

• High level APIs

Copyright © 2023 SambaNova Systems

Kernel bypass network drivers (DPDK, etc.)

• Take the slower kernel out of the
performance path

Copyright © 2023 SambaNova Systems

Kernel bypass network drivers (DPDK, etc.)

• Take the slower kernel out of the
performance path

• RDARuntime uses a hybrid
approach

+ Privileged tasks go in kernel

+ Low-latency app create/destroy in
userspace

• One-time expensive setup/teardown of resource
control structures the control path

• Kernel-bypass path to execute applications
directly via memory mapped control structures

+ Interrupt steering, configuration,
and system-wide structures live in
kernelspace for convenience

Copyright © 2023 SambaNova Systems

RDARuntime Architecture

Copyright © 2023 SambaNova Systems

User's Perspective

• User provides PyTorch graph

• Compiler processes the graph and creates PEF
(Plasticine Executable Format)

• Application looks like:
+ PEF specifies RDU exec

+ Python code specifies CPU exec

• Runtime & Samba SDK orchestrates
+ Data movement

+ Graph exec

+ HW setup/destroy

+ rdu<->rdu<->host communication

Copyright © 2023 SambaNova Systems

High level components
• Graph stack

+ HW and SW abstractions
+ Graph execution and data

movement engine
+ Frontend APIs
+ CCL

• Admin section
+ SNML
+ System init
+ Fault management

• Kernelspace
+ Interrupt steering
+ Resource allocation
+ HW abstraction

Copyright © 2023 SambaNova Systems

Multi-Tenancy

• Different users open the library

• All ring0 privileged tasks are
handled in kernel

• App setup provisions resources

• At setup/teardown time, DMA
map/unmap HW resources into
userspace

RDA RDA

Copyright © 2023 SambaNova Systems

Scale-out: Data parallel

• Run replicas of a model in
parallel

• Exchange progress after FW/
BW, before optimizer

• Parallel across minibatches

• Training only

• Communication is SW
initiated and limited to
gradient sync

Copyright © 2023 SambaNova Systems

Scale-out: Model parallel

• More flexible

• More difficult to map with a compiler

• More dependent on physical
compute HW than DP

• Divide a model into synchronized
pieces

• HW initiated data transfers are
not limited to any particular step

Copyright © 2023 SambaNova Systems

Disaggregated RDUs: Remote Execution

• HPC app runs ML inference or periodic training
throughout its execution

+ Common for "in the loop" AI guided simulations

• CPU/GPU parts of the app run on a separate
HPC node

• Target RDUs via a preconfigured app server
running in RDARuntime

Copyright © 2023 SambaNova Systems

Experimental Analysis

Copyright © 2023 SambaNova Systems

Scaling Study Experimental Setup - Chip Level

• DP + MP training

• Per chip:
+ 2 threads on 4 tiles each

+ MP mode

• Each 2-way MP group acts as a DP replica

• Most efficient way to map due to I/O
hierarchy
+ per chip, 2 groups of 4 tiles with higher

internal bandwidth

Copyright © 2023 SambaNova Systems

Scaling Study Experimental Setup - Rack Level
• Per rack: 2 systems

• Per system: 8 RDUs, 1 x86
host

+ Connected by internal fabric

• 1-64 way DP training

+ Using 2-way MP per replica

+ 400G Ethernet + RDMA
(RoCE) across hosts

• 4 racks

Copyright © 2023 SambaNova Systems

Scaling Study Results

• GPT 13.5B parameter model

• Training

• Used global and per-chip batch
size to vary amount of work

+ Global & per worker range:
128-8192

• Efficiency:
+ weak: 95.3% at 64 RDU
+ strong: 93.8% at 64 RDU

• Full numerical results in paper
appendix and on extra slide

Copyright © 2023 SambaNova Systems

Latency Profiling
Summary:

• Logistic regression
• 10,000 iterations
• Batch size 1
• Measured with SW timers

Python + Python-to-C:

• Pytorch app setup
• Data prep
• CPU part of app
• Time in Pybind

Data Xfer and Conv

• Layout, data type, and
MOrder changes

• Transfer to RDU via PCIe

HW setup

• Register programming
• Section execution/swaps

HW

• Time with RDU compute
running

This logreg model is extremely small
(doesn't require a lot of FLOPS) and
was run only for the purpose of
collecting runtime latency

Copyright © 2023 SambaNova Systems

Future work

• More details about distributed learning
• More comprehensive scaling and latency studies
• "Deep dive" into some of the components mentioned here
• SN40 poses new challenges:

+ Memory and I/O hierarchy
+ More flexible scaling

Copyright © 2023 SambaNova Systems

Acknowledgments
• RDARuntime team (https://www.glick.cloud/rdaruntime-contributors)
• Blaine Rister, Fansheng Cheng, Greg Dykema (editors)
• Neal Sanghvi (figure assistance)

https://www.glick.cloud/rdaruntime-contributors

Copyright © 2023 SambaNova Systems

Thank you
Come to booth #681 for questions we don't have time
to answer here :)

benjamin.glick@sambanova.ai

Copyright © 2023 SambaNova Systems

Appendices

Copyright © 2023 SambaNova Systems

Full scaling data

Copyright © 2023 SambaNova Systems

Cloud vs Appliance: Appliance

• Low latency mode

• App create: map HW resources
into userspace

• Selectively map resources based
on allocated resources

• HAL layer directly accesses RDU
resources from user process after
map finishes

• After resources are mapped,
security checking doesn't happen
until context destroy

Copyright © 2023 SambaNova Systems

Cloud vs Appliance: Cloud

• Elevated isolation mode

• Direct I/O to device is disabled in
cloud mode

• All app control/HW access
moves to kernelspace

• Cloud command processor
implements a work queue

• Client/server model - server in
kernelspace validates each
request for security

Copyright © 2023 SambaNova Systems

