
Fine-grained Accelerator Partitioning
In Serverless Computing
Aditya Dhakal1, Philipp Raith1, Logan Ward2, Rolando P. Hong Enriquez1, Gourav Rattihalli1

Kyle Chard2,3, Ian Foster2,3 and Dejan Milojicic1

1 Hewlett Packard Labs
2 Argonne National Laboratory
3 University of Chicago

11/13/23 1

2

• Accelerators with Function as a Service (FaaS)
• GPU utilization of workflows
• GPU multiplexing techniques
• Parsl FaaS platform
• Experimental Results
• Conclusion

Outline

3

• FaaS functions: stateless and short-lived
• Can be easily scaled-out when number of invocation increases
• Resources released as invocation decrease

• FaaS can effectively utilize hardware when compute resources can be fine-grained partitioned

• Finer-grained accelerators partitioning is often not present in FaaS frameworks out of the box
• Many FaaS systems allocate accelerators as a whole for a particular function

• We enable fine-grained GPU partitioning in a popular Parsl FaaS framework

Accelerators for Function-as-a-Service (FaaS)

• Workflows do not fully utilize available GPU compute
• Many kernels of a workflow are small

• LLaMa2 does not improve inference time of text
completion when the GPU resources increase

• Some image classification models (convolutional
DNNs) have few kernels that utilize a lot of compute
• Most kernels for these DNN inference only require small

amount of compute

Low GPU Utilization of Some Applications

LLaMA2 runtime vs. GPU SM count

ImageNet Models Conv. Kernels FLOPs
4

5

• We had similar “Low utilization” observation in
other applications and DNN models

• Other form of underutilization
• Workflows where accelerator is idle for large amount of

time

Lower Utilization in Other Applications

Molecular dynamics workflow

Training and Inference uses GPU but
simulation does not

• A solution to low GPU utilization is to run multiple workloads in
GPU concurrently
• Providing entire GPU for a single function is not cost-effective

• NVIDIA GPUs have Multi-process Service (MPS) that lets user
partition GPUs

• MPS allows user to fix maximum number of streaming multiprocessors

• Users can choose GPU percentage metric (e.g. 50% of V100 means
process will get 40 SMs)

• Timesharing: Default for NVIDIA GPUs.
• multiple kernels running concurrently will time multiplex the GPU

Multiplexing the GPUs: Current Tools

DenseNet (15% GPU)

ResNext-50 (35% GPU)

VGG-16 (50% GPU)

Example of MPS dividing GPU SMs with MPS

6

7

• Multi-instance GPU (MIG) creates pre-defined
smaller instances of a GPU and provide isolation
for multiple process to utilize GPU

• MIG divides both SMs and Memory of a GPU

NVIDIA Multi-Instance GPU
H100 A100

Available MIG
Instances

7x 10GB
4x 20GB
2x 40GB
1x 80GB

7x 10GB
3x 20GB
2x 40GB
1x 80GB

MIG instances available for H100 and A100

GPU Memory

Streaming Multiprocessors

GPU Memory

Streaming
Multiprocessors

GPU Memory

Streaming
Multiprocessors

GPU Memory

Streaming
Multiprocessors

8

• MPS allows to partition the resources for a process before the process starts
• MIG is bit more static: Partitions are first allocated then applications can launch their kernels on each

partition

• MPS does not provide memory isolation. All processes access single global memory
• MIG enforces memory isolation

• MIG currently requires GPU reset to change allocations
• MPS does not require GPU reset

NVIDIA: MPS and MIG

9

• AMD GPUs can also limit application to a specified
resource with Compute unit (CU)-masking approach

• With CU-masking a specific set of compute unit per
shader can be allocated to each kernel

• A bitmask of CU per shader is provided to kernel

AMD GPUs Multiplexing

Shader 0: 111110000…0 Shader 1: 111111110…0

10

• Parallelization framework for python code

• Developed by University of Chicago and
Argonne National Labs

• Scripts independent of execution environment
• Can run in different environments (laptops,

supercomputer) based on executors

• Wide variety of executors suitable for different
kind of environment

Parsl

Fig source: https://parsl-project.org/

11

• Parsl Executors are abstractions to represent available compute resources that can be used to
process a task

• HighThrougputExecutor is executor designed for cluster-scale use
• We use “local” provider for single node experiments

• HighThroughputExecutor uses multiprocessing based worker pool to co-ordinate tasks

• Utilizes arguments for use/disuse of a particular accelerator
• Enforced using environment variable such as: CUDA_VISIBLE_DEVICES

• We use environment variable so a function runs in a certain GPU% bin

Parsl: HighThroughputExecutor

• Parsl offers an easy way to insert the environmental variable required for multiplexing the NVIDIA GPUs

• We modified the HighThroughputExecutor to start the functions with desired GPU percentage

• The GPU percentage are enforced by populating the CUDA_MPS_ACTIVE_THREAD_PERCENTAGE
environment variable for the target function

GPU Multiplexing in Parsl (MPS)

GPU ID

Corresponding
GPU%

12

• An application can be launched in a particular MIG but updating the CUDA_VISIBLE_DEVICES=MIG-ID

• A code snipped for HighThroughputExecutors show how to put the MIG ID

GPU Multiplexing in Parsl (MIG)

13

• 1 NVIDIA A100 GPU with 80 GB memory
• CUDA 11.8
• Experiment: Text completion with LLaMA2 (7

billion parameter version)

• Total Task: 100 text completion
• When multiple LLaMA2 processes were

running, each process got fraction of 100 text
completion task

• 60% lower task completion time with GPU
partitioning when running 4 processes
concurrently

Performance LLaMA2 Setup

14

15

• We measure the time taken to complete one inference

• With default timesharing, adding more processes
interferes and increases the time of each inference

• With 5 process, MPS and MIG have 40% lower latency
than default timesharing method

Latency Measurement

• Environment variable is a simple fix to assign GPU resources to a function
• Getting a dynamic input from scheduler specifying the GPU% to use

• Changing GPU percentage and MIG attributes is onerous. It requires restarting the processes that are
accessing the GPU
• DNN models with huge weights and parameters are a challenge when changing GPU%

• Implementation beyond single compute node

• Multiplexing where pipelining makes more sense than concurrent execution (e.g. Molecular dynamics
workflow)

• Multiplexing strategy. Memory vs. Compute balance

Next Steps

16

17

• Accelerators are usually allocated as a single unit in FaaS platforms

• GPUs are not fully utilized for many workflows

• With multiplexing techniques, the utilization and throughput of GPUs can be increased

• We utilize GPU partitioning and multiplexing with Parsl, a Faas Framework

• With GPU partitioning and multiplexing, we get 60% lower task completion time and 40% lower latency
on individual inference while performing inference on a large language model

Conclusion

© 2023 Hewlett Packard Enterprise Development LP

aditya.dhakal@hpe.com

Thank you

