
Sequential Task Flow Runtime Model Improvements
and Limitations
Yu Pei*, George Bosilca, Jack Dongarra

University of Tennessee, Innovative Computing Laboratory, USA

November 13th, 2022

12th International Workshop on Runtime and Operating Systems for Supercomputers (ROSS)

*now working at Microsoft

Outline

1. Introduction and Motivation

2. Background of PaRSEC Runtime System, PTG and DTD Interfaces

3. Sequential Task Flow (STF) Optimizations and Limitations

1. Trimming to reduce overheads

2. Dynamic collective operations

4. Experiments with tile-based Cholesky and QR factorizations

5. Conclusions and Future Work

2

Introduction
3

June 2022 TOP500
No.1 machine

Frontier at ORNL with HPL
score of 1.1 Exaflop/s1

1. https://www.top500.org/lists/top500/2022/06/

• High Performance Computing officially in the Exascale era

• Recent hardware trend indicates that many cores supported by
multiple memory hierarchies and accelerators will continue to
dominate the top systems

• It is a challenge at the software level, also an opportunity

• Task-based runtime systems as alternative programming model:
performant and portable. Balance with usability

• A need to evaluate the current tasking models, possible
extensions and limitations

Programming Model
4

• Is a view of data and execution; sits between applications and architectures

• Distributed memory models:

• Message Passing Interface (MPI) standard is the dominant model for inter-process communication

• point to point, collective, one-sided operations

• single program, multiple data (SPMD) where user manages communication explicitly

• Partitioned Global Address Space (PGAS)

• Chapel, UPC++, OpenSHMEM (either as programming language, or library)

• Shared memory models:

• OpenMP, Kokkos, CUDA/HIP, Pthreads

• Effective interoperanility between MPI and shared memory models itself is a challenging
issue

Task-based Runtime System
5

• Follows the dataflow programming model, computation on data as task, the data input/output creates
the dependencies among tasks and form a directed acyclic graph (DAG)

• Finer grain synchronization, manage threading, accelerators and across networks (algorithm and
performance separation of concerns)

• Runtimes with some traction in the community:

• PaRSEC: Provides multiple interfaces to express the task graph, supports a wide variety of applications

• Legion: Logical regions to represent partitioned data to infer task dependencies

• StarPU: Sequential task insertion, like PaRSEC DTD, application in dense and sparse linear algebra

• Taskflow: Motivated by computer-aided design (CAD), support complex task graph with control flow

• OmpSs/OpenMP: directive based, support accelerators, can work in conjunction with high-level programming

language

• Many others exists highlighting a rich and active research field

Example DAG
from Cholesky
factorization

PaRSEC Runtime System
6

• Three interfaces: Parameterized task graph (PTG), Dynamic task discovery
(DTD) and Template task graph (TTG)
• Modular design, developers can work at application level, design interface

or optimize runtime internals:
• matrix operations; new interface or new APIs; task scheduling, communication engine,

thread binding etc

Parallel Runtime Scheduling
and Execution Controller

Motivations
7

• PaRSEC Parameterized Task Graph (PTG) Domain Specific Language (DSL) expresses the
task graph with a pure dataflow programming paradigm. The approach might be
challenging, with a steep learning curve but is extremely portable and effective for non
dynamic and non-data dependent programming

• Sequential Task Flow (STF) model (PaRSEC lingo Dynamic Task Discovery) has several
advantages:
• dependencies don’t need to be specified a-priori
• Provides an API based interface to generate the task graph dynamically
• User can write the algorithm as a sequential code

• Still provide the benefit of finer grain synchronization, and easier for user adoption
• However, each node needs to iterate over the entire graph for dependency analysis

resulting in an analysis cost that increases with the number of nodes

• In this research we optimize DTD by providing the ability to trim task graph to reduce
overhead, and integrate collective communications in the programming paradigm

• Evaluated the changes to the programming model, limitations of the approach with
Cholesky and QR factorizations

Handling dependencies for DTD and overheads 8

Current scheme and new data-level key to
enable transparent user graph trimming

• Current approach with analysis
overhead increase as more nodes
are used
• Legion/Regent proposed DAG trace

replay technique to reduce overhead1

• StarPU propose a form of DAG
trimming

• We propose changes to the
programming model itself instead,
where user can supply knowledge to
trim the graph, and call explicit
collective as addition to the DTD
interface Model from Dynamic Task Discovery in a

Data-Flow, Task-Based Runtime System,
Reazul Hoque, PhD dissertation

1. Dynamic Tracing: Memorization of Task Graphs for Dynamic Task-Based Runtimes

https://trace.tennessee.edu/utk_graddiss/5762/

Trimming to reduce overheads: label the data flow
9

Grey square represents local
task, white square represents remote
task. Circle represents the structure
passed to communication engine.

• Instead of naming tasks uniquely, we only
need to make sure the data send/recv on
both side can be uniquely matched

• Transparent to the original code, since the
remote tasks with no data dependency with
local tasks will not require any matching

• Trimming the graph can significantly reduce
the overhead of task insertion

• In the new scheme, data flow ID is a
combination of sender rank and sequence
number to uniquely
label each data transfer

• Both the sender and the receiver has the
dependent tasks inserted; the data ID will be
assigned correctly for the two sides to match
the data transferred

User level dynamic collective operation
• MPI collective calls have a communicator

parameter, predefined with participant
processes
• Contains not only broadcast, but gather,

allgather, allreduce(contain operations) etc
• Our goal is to making distributed copy of a

data
• StarPU implements broadcast without explicit

API, assume all remote tasks will be known
when data is ready to be sent (might have
missing participants)1

• PaRSEC PTG has compact representation of
all the tasks, have unique key for each task
• With this information, broadcast via MPI P2P

(Chain, Binomial tree)

10

1. Using Dynamic Broadcasts to Improve Task-Based Runtime Performances

Example PaRSEC PTG
kernel where broadcast
pattern is used

User level dynamic collective operation
• Instead of implicit broadcast, we

decided to provide an explicit API
call
• Maintain the default P2P behavior,

can selectively decide where to
convert to collective operation (with
different topologies)
• Algorithm writer needs to clearly

articulate the grouping information,
and this metadata will guide the
data propagation (ability to adjust
priority)
• Based on the previous feature, we

generate collective operation with
data level P2P keys

11

two stages approach, where we prepare: the
global key, the data flow keys and participating

ranks as the first message, and the actual
broadcast will use the global ID to progress

0

21

3

A: G_ID+ Keys +
Ranks

 B: Actual data

1. propagate with bcast keys and
ranks for the descendants

2. Propagate actual data with G_ID,
independent from step 1

3. On completion of receiving
metadata via

 P2P local key, populate message
with G_ID and metadata to match

with propagation of actual data
from step 2

4. Continue the steps for
downstream ranks

Test Problems
12

0

3 4

0 21

3 354

0 021

3 354

1

4 5

0

3

3

0

0

1 2 0 1 2

0

54

354

1

1

3

1 2 0 1 2

54

54

2

02

0 21

21

POTRF

TRSM

SYRK

GEMM

GEQRT

TSQRT

UNMQR

TSMQR

The four different kernels from Cholesky and QR
respectively. Both runs on a 2X3 compute grid with 2-D block
cyclic distribution. For QR, a super-tiling of 2 is used on the

grid row to reduce cross node P2P communication.

• Tile-based Cholesky and QR, with nested for loops and regular data dependencies between tasks

• Respectively have !
"
𝑛3 and #

"
𝑛3 floating point operations, and QR has a tighter dependency

Modification to User Code
13

• User level code will have conditionals to decide whether to insert a given task
• Broadcast call will affect whether remote tasks are inserted, or serve as central

point of connection
• Writer task needs to insert remote readers, reader tasks need to insert at least the

correct data writer task, simpler for nested for-loops but error prone for complicated
graph (similar to SPMD)

Rank 4Rank 1Rank 4 Rank 1

4
4

021
021

1
1 2

1 2 0 1 2
4
4

2

54
354

1
1

1
1

3
1 2 0 1 2

54
54

Left, trimmed task graph without broadcast call; Right,
explicit broadcast call to propagate POTRF data. Color scheme

and data distribution follows that from previous page. Lighter red
and purple represent remote tasks, yellow represents broadcast

task. Data dependency between TRSM and GEMM omitted

Since only the TSMQR tasks are of order O(N 3), we
can insert all the other tasks in all the nodes while inserting
TSMQR only on ranks that are in the same row or column of
the current panel tasks. Left is for tasks inserted on rank 1,

while right figure is for tasks on rank 4

14

With Trimming and Broadcast
if(rank_of_data(A, k, k) == rank) {
insert_task(dtd_tp, parsec_core_potrf,

...);
}
// Broadcast diagonal tile to current
panel
for(int m = k+1; m < total; m++) {
int tile_rank = rank_of_data(A, k, m);
// collect ranks into destination rank

array
dest_ranks[dest_rank_idx] = tile_rank;

}
if(participate_in_bcast) {
dtd_tile_root = PARSEC_DTD_TILE_OF(A, k,

k);
parsec_dtd_broadcast(
dtd_tp, root,
dtd_tile_root, TILE_FULL,
dest_ranks, dest_rank_count);

}DTD interface of the LU algorithm
Update data size to send in the body

Modification to User Code

Experiments
• Run on two HPC systems:

• Shaheen II, a Cray XC40 with 6174 nodes of
Intel Haswell processor with 128GB memory.
Cray Aries network interconnect. Compiled
with Cray MPI and Intel toolchain (MKL)

• Fugaku, Fujitsu ARM (SVE) system with
A64FX processor, 32GB memory, TofuD
interconnect. Compiled with Fujitsu MPI and
SSL2 library

• Benchmark the performance of one
broadcast, compare with PTG broadcast,
DTD p2p
• Broadcast is faster than p2p on Fugaku,

but the opposite on Shaheen II. Network
topology impact; situation will change in
real application

15

Fugaku
Shaheen II

16 64

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

Number of Nodes

Ti
m

e
(s

)

dtd_bcast dtd_p2p ptg_bcast 560 960 1500

Benchmark of a broadcast operation for sending
a square tile of double floating points

Experiments
• ScaLAPACK result as reference
• Different versions with trimming,

broadcast operation or both
• Base DTD and PTG version too
• Runtime implementation performs

better than ScaLAPACK
• Single node DPOTRF can achieve

860 GFLOP/s
• Tile size needs to be tuned. DTD QR

requires bigger tile size
• Trimming and broadcast both have

benefits, but reducing number of
tasks inserted is key

• Broadcast version is better despite
slower than P2P on benchmark

• Slowdown in larger matrix for QR,
need further investigation

16

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

50

100

150

200

100 200 300 400 500 600
Matrix Size (k)

TF
lo

p/
s

●

●

●

●

●

●

bcast
bcast_trimmed
dtd_base
PTG
scalapack
trimmed

560
960

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

50

100

100 200 300 400 500 600
Matrix Size (k)

TF
lo

p/
s

560
960

●

●

●

●

●

bcast_trimmed
dtd_base
PTG
scalapack
trimmed

●

●

●
●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

100 200 300 400 500 600
Matrix Size (k)

TF
lo

p/
s

560
960

●

●

●

●

●

bcast
bcast_trimmed
dtd_base
PTG
trimmed

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

50

100

150

200

250

100 200 300 400 500 600
Matrix Size (k)

TF
lo

p/
s

560
960

●

●

●

●

bcast_trimmed
dtd_base
PTG
trimmed

Shaheen II, top 256 nodes, bottom 512 nodes
Left, Cholesky, Right, QR factorization

Experiments
• Similar trend as on Shaheen II
• DPOTRF on one node of Fugaku

can achieve 1700 GFLOP/s
• Base DTD performs poorly, and

broadcast alone doesn’t help
• Trimming the graph, thus

reducing insertion overhead
provide relief

• For QR, due to the tighter
dependencies, only small
improvement

• QR performance with tile size
960 takes over that with size
560 sooner

17

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

100 200 300 400 500 600
Matrix Size (k)

TF
lo

p/
s

●

●

●

●

●

●

bcast
bcast_trimmed
dtd_base
PTG
scalapack
trimmed

560
960

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

50

100

150

100 200 300 400 500 600
Matrix Size (k)

TF
lo

p/
s

560
960

●

●

●

●

●

bcast_trimmed
dtd_base
PTG
scalapack
trimmed

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

200

400

600

100 200 300 400 500 600
Matrix Size (k)

TF
lo

p/
s

560
960

●

●

●

●

●

bcast
bcast_trimmed
dtd_base
PTG
trimmed

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

100

200

300

100 200 300 400 500 600
Matrix Size (k)

TF
lo

p/
s

560
960

●

●

●

●

bcast_trimmed
dtd_base
PTG
trimmed

Fugaku, top 256 nodes, bottom 512 nodes
Left, Cholesky, Right, QR factorization

Conclusions and Future Works
• Performance is portable across the two systems, with different

FLOPs to bandwidth ratio
• Even for applications like dense factorizations, further tuning is

needed
• To scale to entire systems, minimization of the runtime overhead

(trimming or PTG) is a requirement
• Communication speed is critical for current systems, collectives

provide a lot of benefits for runtime system

• Further investigate the collective and scaling issues
• Reduce metadata transfer, adopt different broadcast topologies

18

Questions?

11/13/22SC22 | Dallas, TX | hpc accelerates. 19

