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Introduction
3

June 2022 TOP500 
No.1 machine 

Frontier at ORNL with HPL
score of 1.1 Exaflop/s1

1. https://www.top500.org/lists/top500/2022/06/

• High Performance Computing officially in the Exascale era 

• Recent hardware trend indicates that many cores supported by 
multiple memory hierarchies and accelerators will continue to 
dominate the top systems

• It is a challenge at the software level, also an opportunity

• Task-based runtime systems as alternative programming model: 
performant and portable. Balance with usability

• A need to evaluate the current tasking models, possible 
extensions and limitations



Programming Model 
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• Is a view of data and execution; sits between applications and architectures

• Distributed memory models:

• Message Passing Interface (MPI) standard is the dominant model for inter-process communication

• point to point, collective, one-sided operations 

• single program, multiple data (SPMD) where user manages communication explicitly

• Partitioned Global Address Space (PGAS) 

• Chapel, UPC++, OpenSHMEM (either as programming language, or library) 

• Shared memory models:

• OpenMP,  Kokkos, CUDA/HIP, Pthreads

• Effective interoperanility between MPI and shared memory models itself is a challenging 
issue



Task-based Runtime System 
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• Follows the dataflow programming model, computation on data as task, the data input/output creates 
the dependencies among tasks and form a directed acyclic graph (DAG)

• Finer grain synchronization, manage threading, accelerators and across networks (algorithm and 
performance separation of concerns)

• Runtimes with some traction in the community:

• PaRSEC: Provides multiple interfaces to express the task graph, supports a wide variety of applications

• Legion: Logical regions to represent partitioned data to infer task dependencies

• StarPU: Sequential task insertion, like PaRSEC DTD, application in dense and sparse linear algebra 

• Taskflow: Motivated by computer-aided design (CAD), support complex task graph with control flow

• OmpSs/OpenMP: directive based, support accelerators, can work in conjunction with high-level programming 

language

• Many others exists highlighting a rich and active research field

Example DAG
from Cholesky 
factorization 



PaRSEC Runtime System
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• Three interfaces: Parameterized task graph (PTG), Dynamic task discovery 
(DTD) and Template task graph (TTG)
• Modular design, developers can work at application level, design interface 

or optimize runtime internals:
• matrix operations; new interface or new APIs; task scheduling, communication engine, 

thread binding etc

Parallel Runtime Scheduling 
and Execution Controller



Motivations
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• PaRSEC Parameterized Task Graph (PTG) Domain Specific Language (DSL) expresses the 
task graph with a pure dataflow programming paradigm. The approach might be 
challenging, with a steep learning curve but is extremely portable and effective for non 
dynamic and non-data dependent programming

• Sequential Task Flow (STF) model (PaRSEC lingo Dynamic Task Discovery) has several 
advantages:
• dependencies don’t need to be specified a-priori
• Provides an API based interface to generate the task graph dynamically 
• User can write the algorithm as a sequential code

• Still provide the benefit of finer grain synchronization, and easier for user adoption
• However, each node needs to iterate over the entire graph for dependency analysis 

resulting in an analysis cost that increases with the number of nodes

• In this research we optimize DTD by providing the ability to trim task graph to reduce 
overhead, and integrate collective communications in the programming paradigm

• Evaluated the changes to the programming model, limitations of the approach with 
Cholesky and QR factorizations



Handling dependencies for DTD and overheads 8

Current scheme and new data-level key to 
enable transparent user graph trimming

• Current approach with analysis 
overhead increase as more nodes 
are used
• Legion/Regent proposed DAG trace 

replay technique to reduce overhead1

• StarPU propose a form of DAG 
trimming 

• We propose changes to the 
programming model itself instead, 
where user can supply knowledge to 
trim the graph, and call explicit 
collective as addition to the DTD 
interface Model from Dynamic Task Discovery in a 

Data-Flow, Task-Based Runtime System, 
Reazul Hoque, PhD dissertation 

1. Dynamic Tracing: Memorization of Task Graphs for Dynamic Task-Based Runtimes

https://trace.tennessee.edu/utk_graddiss/5762/


Trimming to reduce overheads: label the data flow
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Grey square represents local
task, white square represents remote 
task. Circle represents the structure 
passed to communication engine. 

• Instead of naming tasks uniquely, we only 
need to make sure the data send/recv on 
both side can be uniquely matched

• Transparent to the original code, since the 
remote tasks with no data dependency with 
local tasks will not require any matching

• Trimming the graph can significantly reduce 
the overhead of task insertion

• In the new scheme, data flow ID is a
combination of sender rank and sequence 
number to uniquely
label each data transfer

• Both the sender and the receiver has the 
dependent tasks inserted; the data ID will be 
assigned correctly for the two sides to match 
the data transferred



User level dynamic collective operation
• MPI collective calls have a communicator 

parameter, predefined with participant 
processes
• Contains not only broadcast, but gather, 

allgather, allreduce(contain operations) etc
• Our goal is to making distributed copy of a 

data 
• StarPU implements broadcast without explicit 

API, assume all remote tasks will be known 
when data is ready to be sent (might have 
missing participants)1

• PaRSEC PTG has compact representation of 
all the tasks, have unique key for each task
• With this information, broadcast via MPI P2P 

(Chain, Binomial tree)
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1. Using Dynamic Broadcasts to Improve Task-Based Runtime Performances

Example PaRSEC PTG 
kernel where broadcast 
pattern is used



User level dynamic collective operation
• Instead of implicit broadcast, we 

decided to provide an explicit API 
call
• Maintain the default P2P behavior, 

can selectively decide where to 
convert to collective operation (with 
different topologies)
• Algorithm writer needs to clearly 

articulate the grouping information, 
and this metadata will guide the 
data propagation (ability to adjust 
priority)
• Based on the previous feature, we 

generate collective operation with 
data level P2P keys
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two stages approach, where we prepare: the 
global key, the data flow keys and participating 

ranks as the first message, and the actual 
broadcast will use the global ID to progress

0

21

3

A: G_ID+ Keys + 
Ranks

 B: Actual data

1. propagate with bcast keys and 
ranks for the descendants

2. Propagate actual data with G_ID, 
independent from step 1

3. On completion of receiving 
metadata via 

 P2P local key, populate message 
with G_ID and metadata to match 

with propagation of actual data 
from step 2

4. Continue the steps for 
downstream ranks



Test Problems
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UNMQR
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The four different kernels from Cholesky and QR
respectively. Both runs on a 2X3 compute grid with 2-D block
cyclic distribution. For QR, a super-tiling of 2 is used on the

grid row to reduce cross node P2P communication.

• Tile-based Cholesky and QR, with nested for loops and regular data dependencies between tasks

• Respectively have !
"
𝑛3 and #

"
𝑛3 floating point operations, and QR has a tighter dependency



Modification to User Code
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• User level code will have conditionals to decide whether to insert a given task
• Broadcast call will affect whether remote tasks are inserted, or serve as central 

point of connection 
• Writer task needs to insert remote readers, reader tasks need to insert at least the 

correct data writer task, simpler for nested for-loops but error prone for complicated 
graph (similar to SPMD)

Rank 4Rank 1Rank 4 Rank 1
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1 2 0 1 2
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Left, trimmed task graph without broadcast call; Right,
explicit broadcast call to propagate POTRF data. Color scheme

and data distribution follows that from previous page. Lighter red
and purple represent remote tasks, yellow represents broadcast

task. Data dependency between TRSM and GEMM omitted

Since only the TSMQR tasks are of order O(N 3), we
can insert all the other tasks in all the nodes while inserting
TSMQR only on ranks that are in the same row or column of
the current panel tasks. Left is for tasks inserted on rank 1,

while right figure is for tasks on rank 4
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With Trimming and Broadcast
if(rank_of_data(A, k, k) == rank) {
insert_task( dtd_tp, parsec_core_potrf, 

...);
}
// Broadcast diagonal tile to current 
panel 
for(int m = k+1; m < total; m++) { 
int tile_rank = rank_of_data(A, k, m);
// collect ranks into destination rank 

array
dest_ranks[dest_rank_idx] = tile_rank;

}
if( participate_in_bcast ) {
dtd_tile_root = PARSEC_DTD_TILE_OF(A, k, 

k);
parsec_dtd_broadcast(
dtd_tp, root,
dtd_tile_root, TILE_FULL,
dest_ranks, dest_rank_count);

}DTD interface of the LU algorithm
Update data size to send in the body

Modification to User Code



Experiments
• Run on two HPC systems: 

• Shaheen II, a Cray XC40 with 6174 nodes of 
Intel Haswell processor with 128GB memory. 
Cray Aries network interconnect. Compiled 
with Cray MPI and Intel toolchain (MKL)

• Fugaku, Fujitsu ARM (SVE) system with 
A64FX processor, 32GB memory, TofuD
interconnect. Compiled with Fujitsu MPI and 
SSL2 library

• Benchmark the performance of one 
broadcast, compare with PTG broadcast, 
DTD p2p 
• Broadcast is faster than p2p on Fugaku, 

but the opposite on Shaheen II. Network 
topology impact; situation will change in 
real application

15

Fugaku
Shaheen II
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Experiments
• ScaLAPACK result as reference
• Different versions with trimming, 

broadcast operation or both
• Base DTD and PTG version too
• Runtime implementation performs 

better than ScaLAPACK
• Single node DPOTRF can achieve 

860 GFLOP/s
• Tile size needs to be tuned. DTD QR 

requires bigger tile size
• Trimming and broadcast both have 

benefits, but reducing number of 
tasks inserted is key

• Broadcast version is better despite 
slower than P2P on benchmark

• Slowdown in larger matrix for QR, 
need further investigation 
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Experiments
• Similar trend as on Shaheen II
• DPOTRF on one node of Fugaku

can achieve 1700 GFLOP/s  
• Base DTD performs poorly, and 

broadcast alone doesn’t help 
• Trimming the graph, thus 

reducing insertion overhead 
provide relief

• For QR, due to the tighter 
dependencies, only small 
improvement

• QR performance with tile size 
960 takes over that with size 
560 sooner
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Conclusions and Future Works
• Performance is portable across the two systems, with different 

FLOPs to bandwidth ratio
• Even for applications like dense factorizations, further tuning is 

needed
• To scale to entire systems, minimization of the runtime overhead 

(trimming or PTG) is a requirement  
• Communication speed is critical for current systems, collectives 

provide a lot of benefits for runtime system

• Further investigate the collective and scaling issues
• Reduce metadata transfer, adopt different broadcast topologies 
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Questions?
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