
Porting the Kitten Lightweight Kernel
Operating System to RISC-V

Nicholas Gordon (me)*, Kevin Pedretti†, Jack Lange‡

*University of Pittsburgh, †Sandia National Laboratories, ‡Oak Ridge National Laboratory

2

Co-Design: a pipe dream or nearly there?

● X86 has ~40 years of legacy stapled to it by this point
– Still starts in real mode!

● Linux has adapted to x86 and thus inherited and integrated that legacy.

● RISC-V is the new kid on the block and making waves in hardware
research

● We need corresponding flexible, extensible system software: Kitten

3

Software and Hardware: A strained relationship

● Hardware gets designed by hardware guys, software gets designed by software guys
– Hardware constraints: feature size, power draw, heat dissipation, complexity
– Systems software has constraints, too: hardware and its capabilities

● But as each changes, catchup can take a long time!
● Co-design has always promised to solve this problem

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

VMWare
released

Intel VT-D

AMD-V

4

Why is it like this? What can we do?

● Chips are very hard to make. Circuit design, simulations, tapeouts, fabrication
delays, costs, etc.

● Hardware features may not get used anyway:
– hardware task-switching, x86’s rings 1 and 2, etc.

● Co-design is becoming more practical:
– Reduce time/cost to prototype hardware: FPGAs
– Reduce difficulty to extend ISAs: RISC-V
– Reduce difficulty to test new hardware: extensible, simple software

5

RISC-V provides open, flexible, and extensible hardware

● RISC-V democratizes hardware design
– Try asking Intel, AMD, etc. to try an experimental change
– Xtensa controllers are an option, but not targeted at research/academia

● RISC-V has a good supply of research hardware implementations, exploring a wide variety of
architectural ideas (just a few examples):
– Pipelining: SHAKTI
– Superscalar: Berkeley’s RISC-V BOOM
– VLIW: Packet Manipulator
– Manycores: Hammerblade, Manticore

● RISC-V has chip design tools:
– Chipyard, FireSim

6

What is the software complement?

● The obvious choice is Linux.
– However, Linux’s enormous complexity makes modification hard, to say the

least.
– The task struct on Linux is ~800 lines long:

7

The software complement is Kitten

● Kitten is simple but capable
– Fewer and simpler hardware abstractions than Linux
– Less complexity and cruft than Linux

● This means extending and modifying Kitten is a lot easier.
– No legacy support built in
– Bootstrapping on new hardware is easier

● We also already ported it to ARM64, in just a few months by a few people.

● Kitten + RISC-V is an enabling combination for co-design

8

Objectives of the Port

● ✅ Platforms: QEMU, SiFive Unmatched
● ✅ Benchmarks: HPCG, STREAM, RandomAccess
● OS Features:

– ✅ Single-process support
– ✅ FPU
– ✅ Timers
– ✅ Interrupts
– × Multi-process
– × Multi-core

● These are on the way!
● This took about one summer by one person.

9

Some interesting lessons learned

● Some interesting challenges faced along the way:
– Bootstrap
– Paging structure
– Linker relaxations
– Register quantity vs ARM and thread-local storage
– L2 cache prefetchers and performance
– L2 cache or scratchpad memory

● How did Kitten make this easier? How hard was this port?

10

Bootstrap

● Need an assembly stub to initialize various bits of the processor and OS
(head.S usually)

● A complete, working head.S embodies a lot of knowledge, assumptions
about hardware
– Don’t want to rewrite it

● So don’t ☺. Kitten can nearly directly re-use Linux’s head.S stub
● Just have to “work the ends together”
● Estimated work time: a week

11

Paging Structure

● Borrow heavily from Linux when possible, can’t borrow here.
Write from scratch.

● RISC-V paging structure is very simple. Pick a bit-width (39-bits
here) and here’s your format. From the Unmatched manual:

12

Paging, continued

● Leafs are found by checking the RWX permission bits
– No collapsing, inherited permissions like on x86

● Accessed/Dirty are controlled by the kernel, not the hardware
– Though an exception will be generated if they are wrong!

● A toggle to prevent supervisor read/write to user pages.
● Less C structs to manage, simpler memory code
● Estimated work time: 2 weeks

13

Linker relaxations and maybe a gotcha?

● RISC-V is a register-rich, but addressing mode-poor ISA.
● Addressing any 32-bit address requires two instructions
● But RISC-V specifies a global pointer (gp), which elides one of the those

instructions.
– Points to an extra ELF section, the small BSS (.sbss).
– Kitten has to load this to the right place
– Have to juggle it when switching from physical to virtual memory

● Estimated work time: a few days

14

Architectural Register Quantity and Thread-Local Storage

● RISC-V has a many general-purpose registers, but few system registers.
● When switching tasks, need to store kernel stack, task struct pointer, etc.

– ARM64 has “banked registers” containing context at each level: stack pointer, thread pointer
● RISC-V has one architectural “scratch” register per level

– We emulate Linux: put the thread info struct at offset 0 inside the task struct, and point tp to both of them
– Fetch the kernel stack from there
– But tp points to thread-local storage, to it has to be juggled when in kernel-mode

● Kitten can borrow from Linux when needed, but avoid its complexity otherwise
● Estimated work time: one or two days
●

15

Performance and cache prefetchers

● To assess port completeness and correctness as well as characterize
hardware, we ran typical benchmarks on:
– QEMU and the Unmatched
– Linux and Kitten

● The Unmatched lacks an L2 prefetcher.
– This has some consequences for memory performance.

● Benchmarks: HPCG, Stream, RandomAccess
– Want to also run NAS suite in future

16

Performance: HPCG

● HPCG: A typical benchmark,
a decent mix of memory and
compute intensiveness.

● Kitten on QEMU on the
workstation outperforms
the Unmatched by a factor
of about 2.

17

Memory Performance: STREAM and RandomAccess

● Two common benchmarks to
characterize memory
performance

● QEMU shows a substantial
advantage in STREAM, but not
in RandomAccess.

18

RandomAccess

19

SiFive Unmatched and its L2 Cache

● Enabled ways can be written to
as a scratchpad (where evictions
might occur at any time)

● Disabled ways can be directly
addressed and used as ordinary
RAM

● The SiFive Unmatched has a very flexible L2 cache that can serve as L2 cache,
scratchpad, direct memory, or some mix of all three.

● At boot time, must enable cache ways.

20

Conclusion

● Although the hardware needs improvement, early results here are promising
● Porting illustrates Kitten’s flexibility and suitability to new, experimental hardware

Co-design targets in the future:
● Exploration of hardware-accelerated global address space
● Security extensions, including capabilities (CHERI)
● Other global pointers

– Would allow for more relaxation and thus faster access
– Require toolchain support, like GCC on ARM64 can do
– Easy to implement in Kitten, hard (?) to put into toolchain

● L2 cache scratchpad/direct memory: accelerated locks, message-passing buffers, etc.
– A week or two to implement (?)

21

Thank you!

● Feel free to ask any questions you have.

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

