$C22

o ele ates.

Lightw Kernel

Co-Design: a pipe dream or nearly there?

X86 has ~40 years of legacy stapled to it by this point

— Still starts in real mode!

Linux has adapted to x86 and thus inherited and integrated that legacy.

RISC-V is the new kid on the block and making waves in hardware
research

We need corresponding flexible, extensible system software: Kitten

—

Software and Hardware: A strained relationship

* Hardware gets designed by hardware guys, software gets designed by software guys

- Hardware constraints: feature size, power draw, heat dissipation, complexity

— Systems software has constraints, too: hardware and its capabilities

» But as each changes, catchup can take a long time!

» Co-design has always promised to solve this problem
Intel VT-D

VMWare
released AMD-V n

Why is it like this? What can we do?

* Chips are very hard to make. Circuit design, simulations, tapeouts, fabrication
delays, costs, etc.

* Hardware features may not get used anyway:

— hardware task-switching, x86’s rings 1 and 2, etc.

e Co-design is becoming more practical:

— Reduce time/cost to prototype hardware: FPGAs
— Reduce difficulty to extend ISAs: RISC-V

- Reduce difficulty to test new hardware: extensible, simple software

RISC-V provides open, flexible, and extensible hardware

e RISC-V democratizes hardware design
- Try asking Intel, AMD, etc. to try an experimental change
— Xtensa controllers are an option, but not targeted at research/academia

» RISC-V has a good supply of research hardware implementations, exploring a wide variety of
architectural ideas (just a few examples):

Pipelining: SHAKTI
Superscalar: Berkeley’s RISC-V BOOM

VLIW: Packet Manipulator

Manycores: Hammerblade, Manticore

* RISC-V has chip design tools:

- Chipyard, FireSim

What is the software complement?

e The obvious choice is Linux.

— However, Linux’s enormous complexity makes modification hard, to say the
least.

— The task struct on Linux is ~800 lines long:
I 727 struct task_struct {

| o ' T wr ? - ! - =1 B ? - - - ” - -|1-\. -\.-. = T4
1525 WARNING: on x86, threaad _struct’ contains a variable-sizeq

o - gy A e - - - I - I - - I I
structure. It *MUST* be at the end of 'task struct’'.

1528 * Do not put anything below here!

The software complement is Kitten

e Kittenis simple but capable

— Fewer and simpler hardware abstractions than Linux

— Less complexity and cruft than Linux
e This means extending and modifying Kitten is a lot easier.

— No legacy support built in

— Bootstrapping on new hardware is easier

 We also already ported it to ARM64, in just a few months by a few people.

 Kitten + RISC-Vis an enabling combination for co-design

—

Objectives of the Port

. Platforms: QEMU, SiFive Unmatched
. Benchmarks: HPCG, STREAM, RandomAccess

e OS Features:

- Single-process support
- FPU

- Timers

- Interrupts

x Multi-process

x Multi-core

* These are on the way!

* This took about one summer by one person.

—

Some interesting lessons learned

* Some interesting challenges faced along the way:

— Bootstrap

— Paging structure

— Linker relaxations

— Register quantity vs ARM and thread-local storage
— L2 cache prefetchers and performance

— L2 cache or scratchpad memory

 How did Kitten make this easier? How hard was this port?

Bootstrap

Need an assembly stub to initialize various bits of the processor and 0OS
(head.S usually)

A complete, working head.S embodies a lot of knowledge, assumptions
about hardware

- Don’t want to rewrite it

So don’t ©. Kitten can nearly directly re-use Linux’s head.S stub

Just have to “work the ends together”

Estimated work time: a week

Paging Structure

* Borrow heavily from Linux when possible, can’t borrow here.
Write from scratch.

* RISC-V paging structure is very simple. Pick a bit-width (39-bits

hara)l and hara’c vininir farmat EFram tha llnmatrhad mannal:
38 30 29 21 20 12 11 0
_VPN[2] _ . VPNIIT . VPN[O] .. ., page offset

Figure 11: Sv39 Virtual Address

63 5463 2827 1918 109876543210

Reserved PPN[2] ~ PPN[1] PPN[O] RsWD|A|G|u[xW[r|v

Figure 13: Sv39 PTE Format

—

Paging, continued

Leafs are found by checking the RWX permission bits

— No collapsing, inherited permissions like on x86

Accessed/Dirty are controlled by the kernel, not the hardware

— Though an exception will be generated if they are wrong!

A toggle to prevent supervisor read/write to user pages.

Less C structs to manage, simpler memory code

 Estimated work time: 2 weeks

ﬁ

Linker relaxations and maybe a gotcha?

* RISC-Vis aregister-rich, but addressing mode-poor ISA.
* Addressing any 32-bit address requires two instructions

« But RISC-V specifies a global pointer (gp), which elides one of the those
instructions.

— Points to an extra ELF section, the small BSS (.sbss).
— Kitten has to load this to the right place

— Have to juggle it when switching from physical to virtual memory

* Estimated work time: a few days

ﬁ

Architectural Register Quantity and Thread-Local Storage

» RISC-V has a many general-purpose registers, but few system registers.
« When switching tasks, need to store kernel stack, task struct pointer, etc.

— ARM®64 has “banked registers” containing context at each level: stack pointer, thread pointer
« RISC-V has one architectural “scratch” register per level

— We emulate Linux: put the thread info struct at offset 0 inside the task struct, and point tp to both of them
— Fetch the kernel stack from there

— But tp points to thread-local storage, to it has to be juggled when in kernel-mode

» Kitten can borrow from Linux when needed, but avoid its complexity otherwise

» Estimated work time: one or two days

B ——

Performance and cache prefetchers

* To assess port completeness and correctness as well as characterize
hardware, we ran typical benchmarks on:

- QEMU and the Unmatched

— Linux and Kitten
 The Unmatched lacks an L2 prefetcher.

— This has some consequences for memory performance.
 Benchmarks: HPCG, Stream, RandomAccess

— Want to also run NAS suite in future

ﬁ

Performance: HPCG

 HPCG: A typical benchmark,
a decent mix of memory and
compute intensiveness.

o Kitten on QEMU on the
workstation outperforms
the Unmatched by a factor
of about 2.

ﬁ

Memory Performance: STREAM and RandomAccess

e Two common benchmarks to
characterize memory
performance

* QEMU shows a substantial
advantage in STREAM, but not
in RandomAccess.

—

RandomAccess

SiFive Unmatched and its L2 Cache

scratchpad, direct memory, or some mix of all three.

At boot time, must enable cache

 Enabled ways can be written to
as a scratchpad (where evictions
might occur at any time)

* Disabled ways can be directly
addressed and used as ordinary

RAM

Reserved

Way 0: 64B Cache Block

Way 1: 64B Cache Block

Way N-1: 64B Cache Block

]

Way N: 64B Cache Block

|

Way 1

Way N-1

Way N

The SiFive Unmatched has a very flexible L2 cache that can serve as L2 cache,

0x01_C000

0x01_8000

0004000

Ox0 0000

Offset from LIM base

ﬁ

» Although the hardware needs improvement, early results here are promising

» Porting illustrates Kitten’s flexibility and suitability to new, experimental hardware
Co-design targets in the future:

» Exploration of hardware-accelerated global address space

» Security extensions, including capabilities (CHERI)

» Other global pointers
— Would allow for more relaxation and thus faster access
— Require toolchain support, like GCC on ARM64 can do
- Easytoimplementin Kitten, hard (?) to put into toolchain
» L2 cache scratchpad/direct memory: accelerated locks, message-passing buffers, etc.

- Aweek ortwo to implement (?)

ﬂ

Thank you!

* Feel free to ask any questions you have.

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

