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The scientific computing ecosystem is evolving rapidly

Resources 

▪ Hardware specialization 
(e.g., architectures, accelerators)

▪ Specialization leads to 
distribution

Workloads

▪ Interactive, real-time 
workloads

▪ Machine learning training 
and inference

▪ Components may best be 
executed in different places

Users

▪ Diverse backgrounds and 
expertise

▪ Different user interfaces 
(e.g., notebooks)
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FaaS as offered by cloud providers

Cloud provider 1

Cloud provider 2

• Single provider, single 
location to submit and 
manage tasks

• Homogenous execution 
environment 

• Transparent and elastic 
execution (of even very 
small tasks)

• Integrated with cloud 
provider data 
management
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We still want:

• Single interface

• Homogenous execution 
environment 

• Transparent and elastic 
execution

• Integrated with data 
management

FaaS as an interface to the scientific computing ecosystem?



6

funcX: managed and federated FaaS

• Cloud-hosted service for managing 
compute

• Register and share FaaS compute
endpoints

• Register and share Python functions

• Reliable, scalable, secure function 
execution

Try funcx on Binder
https://funcx.org

You request a 
function be 

executed on 
endpoint A and B

A A

1

3

2

funcX manages the 
reliable and secure 
execution on those 

endpoints

funcX either returns 
results when the 
function completes 
or stores them in the 
cloud until requested
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Globus hybrid “SaaS” model: Global auth and data fabric
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FuncX hybrid “SaaS”: Global compute fabric

funcX
agent

funcX
agent

Customer owned and 
administered 
computer with funcX
agent running on it

funcX service orchestrates function 
execution via communication with funcX
agent 

Remote Security Domain
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FuncX: a federated function serving ecosystem for research

Endpoints:
– User-deployed and managed
– Dynamically provision resources, deploy 

containers, and execute functions
– Exploit local architecture/accelerators

funcX Service: 
– Single reliable cloud interface
– Register and share endpoints
– Register, share, run functions
– Fire-and-forget execution: outsource 

complexity of remote execution to funcX
– OAuth-based security model to access and 

share functions and endpoints

Choose where to execute functions
– Closest, cheapest, fastest, accelerators …
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Common use case 1: Fire-and-forget execution 
Execute a bag of tasks (e.g., simulations with different parameters, ML inferences) on 
one or more remote computers directly from your environment (e.g., Jupyter on laptop)

Advantages: 
▪ Fire-and-forget execution managed by funcX (tasks/results cached until 

endpoint/client online)
▪ Portability across different systems (optionally making use of specialized hardware)
▪ Elastic scaling to provision resources as needed (from HPC and cloud systems)

Examples: 

Screening billions of molecules to identify potential COVID-19 therapeutics. 
Computing molecule features, running ML inference, selecting top results.
(National Virtual Biotechnology Laboratory, arXiv:2006.02431)

ML-based drug screening Distributed statistical inference for HEP

Wrapping a C-based statistical inference tool as a function so scientists can 
easily fit multiple different hypotheses for new physics signatures (signals). 
(Feickert et al., arXiv:2103.02182)
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Application: Fitting-as-a-Service

Scaling of Statistical Inference
• Fitting all 125 models from pyhf

pallet for published ATLAS SUSY 
1Lbb analysis

• Using University of Chicago 
River cluster: 2 minutes 30 
seconds

12

https://www.hepdata.net/record/ins1755298
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Application: Inverse Spectroscopy

13
Courtesy Eric Jonas, University of Chicago
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Use Case: Inverse Spectroscopy

• Typical run involves 100,000 tasks
• Average of 40 core-hours per task
• Would take 7 years on a modern workstation
• Able to complete analysis in one month at TACC
• Fire and forget: Launch 100,000 tasks

14

“funcX lets us all spend more time on science and 
less on infrastructure!” Eric Jonas
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Common use case 2: Automated data analysis

Construct and run automated analysis pipelines that include steps that need to execute 
in different locations (e.g., near instrument, in data center, on specialized hardware)

Advantages:
▪ Automatically process data as acquired (event- and workflow-based)
▪ Integrate with data movement and other actions (both human and machine)
▪ Execute functions across the computing continuum (close to data, on accelerators, …)

Examples:

Near-real-time analysis of data acquired from the Advanced Photon Source 
to solve protein structures at room temperature.
(Joachimiak et al., https://doi.org/10.1073/pnas.2100170118)

Using DNNs to estimate probability density function by training DNN with 
real-time data (e.g., on Cerebras, DGX, SambaNova) and inference at the 
edge (Liu, Thayar, et al.)

Serial Crystallography Remote training of DNNs

https://doi.org/10.1073/pnas.2100170118


16

Use case: Research Automation

Light source experiments process samples with 
bright, high-energy x-rays

• XPCS: studying materials dynamics
• SSX: solving crystal structures
• HEDM: studying microstructure evolution

Automation allows researchers to catalog data 
automatically, process samples faster, perform real-
time control, etc.

Most flows require computation

• Quality control, reconstruction, analysis, 
machine learning training, transformation, 
inference, plotting, visualization, metadata 
extraction, aggregation

16
Linking Scientific Instruments and HPC: Patterns, Technologies, 
Experiences https://arxiv.org/abs/2204.05128

https://arxiv.org/abs/2204.05128
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funcX action provider enables seamless integration in flows

Globus Flows can invoke arbitrary 
functions via the funcX action provider

Functions may be executed in various 
locations: at the beamline,  local server, 
cluster, cloud

17

HEDM
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CryoEM automation

Globus 
Flows

Share

Set access 
controls

Transfer

Move final 
files to repo

Auth

Get 
credentials

Transfer

Transfer 
raw files

funcX

Launch pre-
processing 

job

funcX

Process/ 
generate 
images

funcX

Add 
Metadata

Carbon!

Correct, 
classify, 
refine, …
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Example: Rapid Training of Deep Neural Networks 
using Remote Resources

• DNN at the edge for fast 
processing, filtering, QC

• Requires tight coupling 
with simulation and 
training with real-time data

• Globus Flow:

71

Data Source HPC/DCAI Edge(Host)

Globus,

Automate

C
om

m
ands

Sta
tu

s

Data Model

User

Request

Status

C
om

m
ands

S
tatus

C
/S

Zhengchun Liu, Jana Thayar, et al.

– Globus to rapidly move data for training
– funcX for simulation and model training
– Globus to move models to the edge
– (Future) funcX for inference at the edge

High energy diffraction microscopy

https://doi.org/10.48550/arXiv.2105.13967

7 seconds

7 + 19 + 5 = 31 s

5 seconds

19 seconds

https://doi.org/10.48550/arXiv.2105.13967
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Common use case 3: funcX as a platform

Build new applications and services that seamlessly execute application components or 
user workloads on remote resources

Advantages:
▪ Robust, secure, and scalable platform for managing parallel and distributed 

execution across a federated ecosystem of computing endpoints
▪ Simple cloud-based API and Python SDK for integration

A hosted service that enables researchers to find, share, publish, and run machine 
learning models and discover training data for science.  funcX enables remote inference 
on specialized resources.
(Chard et al. https://arxiv.org/pdf/1811.11213)

The Data and Learning Hub for Science (DLHub) Xtract: automated bulk metadata extraction

An automated and scalable system for bulk metadata extraction from large, 
distributed research data repositories. Xtract orchestrates the application of 
metadata extractors to groups of files, using funcX to dispatch extractors to data.
(Skluzacek et al. https://doi.org/10.1145/3431379.3460636)

https://doi.org/10.1145/3431379.3460636
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MD

The Manufacturing and ML platform (MDML)

Manufacturing and machine learning

Compute and storage continuum

Edge devices Laboratory machines HPC

1. Instrument sensors 
stream data to the MDML

2.  Use FaaS to analyze 
data on-demand

3. FaaS tasks distributed 
across the computing continuum

4. Results are used to 
guide the experimentf(X)

funcX

Flame spray 
pyrolysis, MERF

Grafana Real-Time Dashboards
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231,000
registered functions

17.2 million
function invocations

3683
registered endpoints

335
users

121s
average function 

runtime

funcX usage is growing rapidly
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Transform laptops, clusters, clouds into function 
serving endpoints
▪ Python-based agent and pip installable 

locally or in Conda
▪ Elastically provisions resources from 

local, cluster, or cloud system
– Using Parsl library

▪ Manages concurrent execution on 
provisioned resources

▪ Optionally manages execution in 
Docker, Singularity, Shifter containers 

▪ Share endpoints with collaborators

$ pip install funcx-endpoint

$ funcx-endpoint configure myep

$ funcx-endpoint start myep
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Register and share functions

Create funcX client (and authenticate)

Define and register Python function

def compute(input_args):
# do something
return results

def compute(input_args):
# do something
return results

def compute(input_args):
# do something
return results
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Execute tasks on any accessible endpoint

Select: function ID, endpoint ID, and input 
arguments

Retrieve results asynchronously (funcX 
stores results in the cloud) 

F(ep1,1)
F(ep1, 2)
F(ep1, 3)
F(ep1, 4)
F(ep1, 5)
F(ep1, 6)
F(ep2, 7)
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funcX scales to 100K+ workers
• funcX endpoints deployed on ALCF Theta and NERSC Cori
• Strong scaling (100K concurrent functions) shows good scaling up to 2K 

containers even with short no-op/sleep tasks
• Weak scaling (10 tasks per container) scales to 131K concurrent 

containers (1.3M tasks) 
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How can we improve data management to/from/between 
functions?

▪ Research functions are reliant on data
– Input, output, and between functions 
– Federated environments may have huge 

latency and bandwidth limitations

▪ Files, objects, other data?
▪ Stateless or stateful functions?

– ML steering and coordination

▪ Research directions: 
– Low latency communication that supports 

application patterns
– Programming models that are data centric
– Transparent wide-area movement
– Intuitive and intelligent caching 
– Dataspace-like models
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How can we reduce the overheads associated with managing 
compute environments?

▪ Container technologies are becoming 
increasingly diverse (Docker, Singularity, 
Firecracker, etc.); no one solution works 
everywhere

▪ Containers are relatively heavyweight 
(especially those used in HPC environments)

▪ Programming virtualization faster, yet insecure
▪ Research directions: 

– New methods at the function level for 
• Creating execution environment
• Sandboxing execution
• Managing resource usage 

T. Shafter, et al. Lightweight Function Monitors (LFMs) @IPDPS
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Can we balance the trade off between start time and resource 
utilization? 
● Cold-starts are challenging in the cloud 

and more so on research CI
○ Node Acquisition: For endpoints in HPC 

clusters, latency of allocating nodes
○ Container Instantiation: For functions that 

require containers, starting them
○ Package Loading: Installing and importing 

necessary packages

● Research directions: 
○ Lightweight virtualization (e.g., Firecracker) 
○ Intelligent environment caching, transfer, 

loading
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Can we efficiently schedule function executions in a federated 
environment?

▪ We have an environment with varying 
performance and overheads
– Execution, transfer, cold start, ...

▪ Delta: Experiment with scheduling across 
heterogenous funcX endpoints
– Raspberry Pis, Desktops, Cloud instances, 

GPUs
– Three scheduling algorithms: Round robin, 

Fastest endpoint, smallest ETA
– Smaller tasks distributed across slower 

endpoints

▪ Research directions: 
– Modelling various overheads
– New FaaS scheduling algorithms
– Workflow scheduling
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How should we deal with the other hard stuff: security, 
policies, regulations, …?

▪ FaaS creates new security challenges
– Simple sharing of functions and endpoints, remote access to resources, 

containerized execution environments, …
– Likely an attractive target to attackers

▪ Research directions: 
– Scalable monitoring, logging, auditing
– Web-based authentication and authorization frameworks
– Container/function security (e.g., application whitelists)
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Can we make it as easy to compute remotely as we compute 
locally?

▪ Increasing heterogeneity makes this:
– necessary (to improve efficiency and gain access 

to specialized capabilities) 
– challenging (to abstract differences between 

systems)
▪ Inflexible authentication and authorization 

models (e.g., 2FA)
▪ Widely varying performance makes it hard 

to optimize performance
▪ Diverse workloads

– Event-based and interactive computing impose 
real-time requirements

– Machine learning steering requires iterative 
feedback loops
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Lessons learned applying funcX to science use cases
Abstracts the complexity of using diverse compute resources
Simplicity: automatic scaling, single interface
Flexible web-based authentication model
Enables event-based processing and automated pipelines
Increases portability between sites, systems, etc.
Resources can be used efficiently and opportunistically
Enables secure function/endpoint sharing with collaborators

🗶 FaaS is not suitable for some applications
🗶 Ratio of data size to compute must be reasonable
🗶 Containerization does not always provide entirely portable codes
🗶 Coarse allocation models do not map well to fine grain/short functions
🗶 Decomposing applications is not always easy (or possible)
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funcx.org
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