
Federated Function-as-a-Service to Power Distributed Computing Pipelines

Ian Foster

Joint work with Kyle Chard, Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek,
Anna Woodard, Ben Blaiszik, Ben Galewsky, Josh Bryan, and Daniel S. Katz

Presentation at ROSS’22, Dallas TX, November 13, 2022

2funcx.org

3

The scientific computing ecosystem is evolving rapidly

Resources

▪ Hardware specialization
(e.g., architectures, accelerators)

▪ Specialization leads to
distribution

Workloads

▪ Interactive, real-time
workloads

▪ Machine learning training
and inference

▪ Components may best be
executed in different places

Users

▪ Diverse backgrounds and
expertise

▪ Different user interfaces
(e.g., notebooks)

4

FaaS as offered by cloud providers

Cloud provider 1

Cloud provider 2

• Single provider, single
location to submit and
manage tasks

• Homogenous execution
environment

• Transparent and elastic
execution (of even very
small tasks)

• Integrated with cloud
provider data
management

5

We still want:

• Single interface

• Homogenous execution
environment

• Transparent and elastic
execution

• Integrated with data
management

FaaS as an interface to the scientific computing ecosystem?

6

funcX: managed and federated FaaS

• Cloud-hosted service for managing
compute

• Register and share FaaS compute
endpoints

• Register and share Python functions

• Reliable, scalable, secure function
execution

Try funcx on Binder
https://funcx.org

You request a
function be

executed on
endpoint A and B

A A

1

3

2

funcX manages the
reliable and secure
execution on those

endpoints

funcX either returns
results when the
function completes
or stores them in the
cloud until requested

7

Globus hybrid “SaaS” model: Global auth and data fabric

8

9

FuncX hybrid “SaaS”: Global compute fabric

funcX
agent

funcX
agent

Customer owned and
administered
computer with funcX
agent running on it

funcX service orchestrates function
execution via communication with funcX
agent

Remote Security Domain

10

FuncX: a federated function serving ecosystem for research

Endpoints:
– User-deployed and managed
– Dynamically provision resources, deploy

containers, and execute functions
– Exploit local architecture/accelerators

funcX Service:
– Single reliable cloud interface
– Register and share endpoints
– Register, share, run functions
– Fire-and-forget execution: outsource

complexity of remote execution to funcX
– OAuth-based security model to access and

share functions and endpoints

Choose where to execute functions
– Closest, cheapest, fastest, accelerators …

11

Common use case 1: Fire-and-forget execution
Execute a bag of tasks (e.g., simulations with different parameters, ML inferences) on
one or more remote computers directly from your environment (e.g., Jupyter on laptop)

Advantages:
▪ Fire-and-forget execution managed by funcX (tasks/results cached until

endpoint/client online)
▪ Portability across different systems (optionally making use of specialized hardware)
▪ Elastic scaling to provision resources as needed (from HPC and cloud systems)

Examples:

Screening billions of molecules to identify potential COVID-19 therapeutics.
Computing molecule features, running ML inference, selecting top results.
(National Virtual Biotechnology Laboratory, arXiv:2006.02431)

ML-based drug screening Distributed statistical inference for HEP

Wrapping a C-based statistical inference tool as a function so scientists can
easily fit multiple different hypotheses for new physics signatures (signals).
(Feickert et al., arXiv:2103.02182)

12

Application: Fitting-as-a-Service

Scaling of Statistical Inference
• Fitting all 125 models from pyhf

pallet for published ATLAS SUSY
1Lbb analysis

• Using University of Chicago
River cluster: 2 minutes 30
seconds

12

https://www.hepdata.net/record/ins1755298

13

Application: Inverse Spectroscopy

13
Courtesy Eric Jonas, University of Chicago

14

Use Case: Inverse Spectroscopy

• Typical run involves 100,000 tasks
• Average of 40 core-hours per task
• Would take 7 years on a modern workstation
• Able to complete analysis in one month at TACC
• Fire and forget: Launch 100,000 tasks

14

“funcX lets us all spend more time on science and
less on infrastructure!” Eric Jonas

15

Common use case 2: Automated data analysis

Construct and run automated analysis pipelines that include steps that need to execute
in different locations (e.g., near instrument, in data center, on specialized hardware)

Advantages:
▪ Automatically process data as acquired (event- and workflow-based)
▪ Integrate with data movement and other actions (both human and machine)
▪ Execute functions across the computing continuum (close to data, on accelerators, …)

Examples:

Near-real-time analysis of data acquired from the Advanced Photon Source
to solve protein structures at room temperature.
(Joachimiak et al., https://doi.org/10.1073/pnas.2100170118)

Using DNNs to estimate probability density function by training DNN with
real-time data (e.g., on Cerebras, DGX, SambaNova) and inference at the
edge (Liu, Thayar, et al.)

Serial Crystallography Remote training of DNNs

https://doi.org/10.1073/pnas.2100170118

16

Use case: Research Automation

Light source experiments process samples with
bright, high-energy x-rays

• XPCS: studying materials dynamics
• SSX: solving crystal structures
• HEDM: studying microstructure evolution

Automation allows researchers to catalog data
automatically, process samples faster, perform real-
time control, etc.

Most flows require computation

• Quality control, reconstruction, analysis,
machine learning training, transformation,
inference, plotting, visualization, metadata
extraction, aggregation

16
Linking Scientific Instruments and HPC: Patterns, Technologies,
Experiences https://arxiv.org/abs/2204.05128

https://arxiv.org/abs/2204.05128

17

funcX action provider enables seamless integration in flows

Globus Flows can invoke arbitrary
functions via the funcX action provider

Functions may be executed in various
locations: at the beamline, local server,
cluster, cloud

17

HEDM

18

CryoEM automation

Globus
Flows

Share

Set access
controls

Transfer

Move final
files to repo

Auth

Get
credentials

Transfer

Transfer
raw files

funcX

Launch pre-
processing

job

funcX

Process/
generate
images

funcX

Add
Metadata

Carbon!

Correct,
classify,
refine, …

19

Example: Rapid Training of Deep Neural Networks
using Remote Resources

• DNN at the edge for fast
processing, filtering, QC

• Requires tight coupling
with simulation and
training with real-time data

• Globus Flow:

71

Data Source HPC/DCAI Edge(Host)

Globus,

Automate

C
om

m
ands

Sta
tu

s

Data Model

User

Request

Status

C
om

m
ands

S
tatus

C
/S

Zhengchun Liu, Jana Thayar, et al.

– Globus to rapidly move data for training
– funcX for simulation and model training
– Globus to move models to the edge
– (Future) funcX for inference at the edge

High energy diffraction microscopy

https://doi.org/10.48550/arXiv.2105.13967

7 seconds

7 + 19 + 5 = 31 s

5 seconds

19 seconds

https://doi.org/10.48550/arXiv.2105.13967

20

Common use case 3: funcX as a platform

Build new applications and services that seamlessly execute application components or
user workloads on remote resources

Advantages:
▪ Robust, secure, and scalable platform for managing parallel and distributed

execution across a federated ecosystem of computing endpoints
▪ Simple cloud-based API and Python SDK for integration

A hosted service that enables researchers to find, share, publish, and run machine
learning models and discover training data for science. funcX enables remote inference
on specialized resources.
(Chard et al. https://arxiv.org/pdf/1811.11213)

The Data and Learning Hub for Science (DLHub) Xtract: automated bulk metadata extraction

An automated and scalable system for bulk metadata extraction from large,
distributed research data repositories. Xtract orchestrates the application of
metadata extractors to groups of files, using funcX to dispatch extractors to data.
(Skluzacek et al. https://doi.org/10.1145/3431379.3460636)

https://doi.org/10.1145/3431379.3460636

21

MD

The Manufacturing and ML platform (MDML)

Manufacturing and machine learning

Compute and storage continuum

Edge devices Laboratory machines HPC

1. Instrument sensors
stream data to the MDML

2. Use FaaS to analyze
data on-demand

3. FaaS tasks distributed
across the computing continuum

4. Results are used to
guide the experimentf(X)

funcX

Flame spray
pyrolysis, MERF

Grafana Real-Time Dashboards

22

231,000
registered functions

17.2 million
function invocations

3683
registered endpoints

335
users

121s
average function

runtime

funcX usage is growing rapidly

23

Transform laptops, clusters, clouds into function
serving endpoints
▪ Python-based agent and pip installable

locally or in Conda
▪ Elastically provisions resources from

local, cluster, or cloud system
– Using Parsl library

▪ Manages concurrent execution on
provisioned resources

▪ Optionally manages execution in
Docker, Singularity, Shifter containers

▪ Share endpoints with collaborators

$ pip install funcx-endpoint

$ funcx-endpoint configure myep

$ funcx-endpoint start myep

24

Register and share functions

Create funcX client (and authenticate)

Define and register Python function

def compute(input_args):
do something
return results

def compute(input_args):
do something
return results

def compute(input_args):
do something
return results

25

Execute tasks on any accessible endpoint

Select: function ID, endpoint ID, and input
arguments

Retrieve results asynchronously (funcX
stores results in the cloud)

F(ep1,1)
F(ep1, 2)
F(ep1, 3)
F(ep1, 4)
F(ep1, 5)
F(ep1, 6)
F(ep2, 7)

26

funcX scales to 100K+ workers
• funcX endpoints deployed on ALCF Theta and NERSC Cori
• Strong scaling (100K concurrent functions) shows good scaling up to 2K

containers even with short no-op/sleep tasks
• Weak scaling (10 tasks per container) scales to 131K concurrent

containers (1.3M tasks)

27

How can we improve data management to/from/between
functions?

▪ Research functions are reliant on data
– Input, output, and between functions
– Federated environments may have huge

latency and bandwidth limitations

▪ Files, objects, other data?
▪ Stateless or stateful functions?

– ML steering and coordination

▪ Research directions:
– Low latency communication that supports

application patterns
– Programming models that are data centric
– Transparent wide-area movement
– Intuitive and intelligent caching
– Dataspace-like models

28

How can we reduce the overheads associated with managing
compute environments?

▪ Container technologies are becoming
increasingly diverse (Docker, Singularity,
Firecracker, etc.); no one solution works
everywhere

▪ Containers are relatively heavyweight
(especially those used in HPC environments)

▪ Programming virtualization faster, yet insecure
▪ Research directions:

– New methods at the function level for
• Creating execution environment
• Sandboxing execution
• Managing resource usage

T. Shafter, et al. Lightweight Function Monitors (LFMs) @IPDPS

29

Can we balance the trade off between start time and resource
utilization?
● Cold-starts are challenging in the cloud

and more so on research CI
○ Node Acquisition: For endpoints in HPC

clusters, latency of allocating nodes
○ Container Instantiation: For functions that

require containers, starting them
○ Package Loading: Installing and importing

necessary packages

● Research directions:
○ Lightweight virtualization (e.g., Firecracker)
○ Intelligent environment caching, transfer,

loading

30

Can we efficiently schedule function executions in a federated
environment?

▪ We have an environment with varying
performance and overheads
– Execution, transfer, cold start, ...

▪ Delta: Experiment with scheduling across
heterogenous funcX endpoints
– Raspberry Pis, Desktops, Cloud instances,

GPUs
– Three scheduling algorithms: Round robin,

Fastest endpoint, smallest ETA
– Smaller tasks distributed across slower

endpoints

▪ Research directions:
– Modelling various overheads
– New FaaS scheduling algorithms
– Workflow scheduling

31

How should we deal with the other hard stuff: security,
policies, regulations, …?

▪ FaaS creates new security challenges
– Simple sharing of functions and endpoints, remote access to resources,

containerized execution environments, …
– Likely an attractive target to attackers

▪ Research directions:
– Scalable monitoring, logging, auditing
– Web-based authentication and authorization frameworks
– Container/function security (e.g., application whitelists)

32

Can we make it as easy to compute remotely as we compute
locally?

▪ Increasing heterogeneity makes this:
– necessary (to improve efficiency and gain access

to specialized capabilities)
– challenging (to abstract differences between

systems)
▪ Inflexible authentication and authorization

models (e.g., 2FA)
▪ Widely varying performance makes it hard

to optimize performance
▪ Diverse workloads

– Event-based and interactive computing impose
real-time requirements

– Machine learning steering requires iterative
feedback loops

33

Lessons learned applying funcX to science use cases
Abstracts the complexity of using diverse compute resources
Simplicity: automatic scaling, single interface
Flexible web-based authentication model
Enables event-based processing and automated pipelines
Increases portability between sites, systems, etc.
Resources can be used efficiently and opportunistically
Enables secure function/endpoint sharing with collaborators

🗶 FaaS is not suitable for some applications
🗶 Ratio of data size to compute must be reasonable
🗶 Containerization does not always provide entirely portable codes
🗶 Coarse allocation models do not map well to fine grain/short functions
🗶 Decomposing applications is not always easy (or possible)

34

funcx.org

https://funcx.org

https://funcx.org/binder

foster@uchicago.edu

