Federated Function-as-a-Service to Power Distributed Computing Pipelines

lan Foster

Joint work with Kyle Chard, Ryan Chard, Yadu Babuiji, Zhuozhao Li, Tyler Skluzacek,
Anna Woodard, Ben Blaiszik, Ben Galewsky, Josh Bryan, and Daniel S. Katz

CHICAGO Argonne "=

Presentation at ROSS’22, Dallas TX, November 13, 2022
I

Federated function as a service

Use funcX to execute functions across a federated ecosystem of funcX endpoints.

| o) |
Tryf‘u'ncX

Use Binder to run funcX tutorials in hosted
Jupyter notebooks. No installation required!

funcx.org

Package
Index

thon
fU

Install funcX

Install the funcX SDK to register, share, and
execute functions.

Quickstart »

LW

&

Deploy an endpoint

Deploy a funcX endpoint on a laptop, cloud,
or cluster.

Learn more »

The scientific computing ecosystem is evolving rapidly

Resources

Hardware specialization

n
(e.g., architectures, accelerators)
= Specialization leads to
distribution
42 Years of Microprocessor Trend Data

107 par
10 .g“‘ v o
10° :A‘:l'. | caner] gmglerThvead

it P erformance
10* “oa ‘,‘“‘..”’}‘ | (SpecINT x 10%)
e L& .‘&'ﬁ,n*""‘ go [Frequency (Hz)

] T | P
10 b ;2.& v v',;\"'.""f f-:] Wattg) o
y a ¥ %0 oy ..’.’! Number of
10 e v k6 b :‘ g 7| Logical Cores
100,“: Fers PRQUISPIVIINS+-4ad
i
1970 1980 1950 2000 2010 2020
Ye:
e e e

Density (%)

Workloads

Interactive, real-time
workloads

Machine learning training
and inference

Components may best be
executed in different places

N

T T T
0.70 0.75 175 180 185200 205 210 5 6 50 55
Latency (s)
(a) tabular file (b)MNIST digit () DIALS stils (d) tomographic () correlation
extraction prediction process preview spectroscopy

Users

Diverse backgrounds and
expertise

Different user interfaces
(e.g., notebooks)

FaaS as offered by cloud providers

Cloud provider 1

Cloud provider 2

Single provider, single
location to submit and
manage tasks

Homogenous execution
environment

Transparent and elastic
execution (of even very
small tasks)

Integrated with cloud
provider data
management

Faa$S as an interface to the scientific computing ecosystem?

We still want:

« Single interface

 Homogenous execution
environment

Transparent and elastic
execution

* Integrated with data
management

funcX: managed and federated FaaS

e Cloud-hosted service for managing

CompUte funcX manages the
. reliable and secure
e Register and share FaaS compute iz execution on those
. endpoints
endpoints

e Register and share Python functions

. . Your
e Reliable, scalable, secure function P
execution endpz)i(rftcit::dog funcX either returns

results when the
function completes
or stores them in the

r- cloud until requested
(b Try funcx on Binder (W
f unc é¢ https://funcx.org

Globus hybrid

“SaaS” model: Global auth and data fabric

4 N
et Subscriber Security Domain
administered storage
system with
Globus Connect No' datg e
i e 1 or staging via Globus,

9 files move directly between
globus storage locations globus
connect connect

CONTROL
CHANNEL
.

EXTERNAL USER
OR APPLICATION

Globus Security Domain

Globus service orchestrates file
movement via communication
with Globus Connect

powered by

amazon

webservices

globus services

IDENTITY
MANAGEMENT

DEVELOPER
APlIs

FILE
TRANSFER

ACCESS FILE
CONTROL SHARING

RELIABLE
TRANSFER

1.7PB

PER DAY

0

1,600+

CONNECTED
INSTITUTIONS

=

REE

INSTITUTIONAL
STORAGE

TAPE
ARCHIVES

— | IDENTITY
&3 PROVIDERS o

E__JACTIVE
ENDPOINTS A

HIGH
~ . PERFORMANCE

@_ COMPUTING
11,000+

ACTIVE SHARED

ENDPOINTS COMMERCIAL
CLOUD
STORAGE

Numbers reflect the 12-month period ended 9/30/2022

FuncX hybrid “SaaS”: Global compute fabric

& =)

Customer owned and Remote Security Domain

administered
computer with funcX
agent running on it

funcX
agent

funcX
agent

CONTROL
CHANNEL

Globus Security Domain

EXTERNAL USER
OR APPLICATION

funcX service orchestrates function

execution via communication with funcX
agent

powered by

globus services amazon

webservices

FuncX: a federated function serving ecosystem for research

=
Endpomts: Execution |
. f(x

— User-deployed and managed f(x), . ﬂl

E

— Dynamically provision resources, deploy [1,2,3 ...]
containers, and execute functions

I__n

— Exploit local architecture/accelerators

funcX Service:

— Single reliable cloud interface

— Register and share endpoints
— Register, share, run functions

— Fire-and-forget execution: outsource
complexity of remote execution to funcX

— OAuth-based security model to access and
share functions and endpoints

Density (%)

Choose where to execute functions

— C|OS€St, cheapest, fastest, accelerators 070 075 175 180 1.85200 205 210 5 6 50 55

Latency (s)

(a) tabular file (b) MNIST digit (c) DIALS stills (d) tomographic (e) correlation
extraction prediction process preview spectroscopy 10

Common use case 1: Fire-and-forget execution

Execute a bag of tasks (e.g., simulations with different parameters, ML inferences) on
one or more remote computers directly from your environment (e.g., Jupyter on laptop)

Advantages:

- Fire-and-forget execution managed by funcX (tasks/results cached until

endpoint/client online)

- Portability across different systems (optionally making use of specialized hardware)
- Elastic scaling to provision resources as needed (from HPC and cloud systems)

Examples: ML-based drug screening

— ¥ T
—
o
© ®
®)
— @)
y @ o
¥
—>

d

Screening billions of molecules to identify potential COVID-19 therapeutics.

Computing molecule features, running ML inference, selecting top results.
(National Virtual Biotechnology Laboratory, arXiv:2006.02431)

Distributed statistical inference for HEP

Worapping a C-based statistical inference tool as a function so scientists can
easily fit multiple different hypotheses for new physics signatures (signals).

(Feickert et al., arXiv:2103.02182) ”

Application: Fitting-as-a-Service

Scaling of Statistical Inference

Fitting all 125 models from pyhf
pallet for published ATLAS SUSY
1Lbb analysis

Using University of Chicago
River cluster: 2 minutes 30
seconds

4000

RIVER

—~ 35001
[72]
2
S 3000
@]
()]
£ 2500

ime
= N
U O
o O
o O

1000 -

Evaluation ti

500

0..

gur. Phys- 3

¢ g0 (2020) 8% g 06 (2029 46

B Wall time
777/, Uncertainty

Bl Single node

Nodes per block = 1
Max blocks = 4

Published analysis probability model

12

https://www.hepdata.net/record/ins1755298

Application: Inverse Spectroscopy

The forward problem

-~

(easy-ish) -

NH,
C10H12Nzo
HO Chemical shifts
\ |
b LI
Molecular 200 150 100 50 0
structure

The inverse problem
(hard)

cpu core time (hours)

total time per molecule

39.9h
&
12.7h
10% - -
: 3.0 33h
" 1éh
L3h -
107 5 0.5h
] L]
I 0.2h
Olh 0w
1071 5 *
W 15 20 B 30

number of atoms in molecule

Courtesy Eric Jonas, University of Chicago
13

Use Case: Inverse Spectroscopy

Typical run involves 100,000 tasks

Average of 40 core-hours per task

Would take 7 years on a modern workstation
Able to complete analysis in one month at TACC
Fire and forget: Launch 100,000 tasks

5

Construct and run automated analysis pipelines that include steps that need to execute
in different locations (e.g., near instrument, in data center, on specialized hardware)

Common use case 2: Automated data analysis

Advantages:
- Automatically process data as acquired (event- and workflow-based)
- Integrate with data movement and other actions (both human and machine)
- Execute functions across the computing continuum (close to data, on accelerators, ...)

Examples:
Serial Crystallography Remote training of DNNs
X-rays. * ‘ e = w
' 2 g ‘, % \ .
Near-real-time analysis of data acquired from the Advanced Photon Source Using DNNs to estimate probability density function by training DNN with
to solve protein structures at room temperature. real-time data (e.g., on Cerebras, DGX, SambaNova) and inference at the

(Joachimiak et al., https://doi.org/10.1073/pnas.2100170118) edge (Liu, Thayar, et al.) 15

https://doi.org/10.1073/pnas.2100170118

Use case: Research Automation

Light source experiments process samples with
bright, high-energy x-rays

e XPCS: studying materials dynamics
e SSX: solving crystal structures

e HEDM: studying microstructure evolution

Automation allows researchers to catalog data
automatically, process samples faster, perform real-
time control, etc.

Most flows require computation

e Quality control, reconstruction, analysis,
machine learning training, transformation,
inference, plotting, visualization, metadata
extraction, aggregation

Linking Scientific Instruments and HPC: Patterns, Technologies,
Experiences https://arxiv.org/abs/2204.05128

Data collection Data reduction, Catalog &
& transfer refine structures publish
N
N - / /
A / //
¥
Chip Protein Nu-fe-mw: CBT_"‘(" Ints Hit Rate
P .;‘g&'z’*H[;:;;]?;r‘éet A"
Data collection Al model Al model
& transfer training deployment
\ \\ /
\
< Y /

16

https://arxiv.org/abs/2204.05128

funcX action provider enables seamless integration in flows

neom |- (IR} =2
Globus Flows can invoke arbitrary Pycho |- | |
functions via the funcX action provider Bragonn | [HEET] B Transfer
ssx-pubish |- [l e
Functions may be executed in various |E ?learch |
-Pri ow en
locations: at the beamline, local serve > s
cluster, cloud SSx-Siills | | | = |
xpes |- I
0 200 400 600 800 1000 1200
Time (s)
H E D M TRANSFER COMPUTE COMPUTE COMPUTE COMPUTE COMPUTE COMPUTE COMPUTE TRANSFER SEARCH
e batond peaicSeareh frenstorm Refmement o Metadt e metadate Resalts

CryoEM automation

L. | Transfer funcX funcX
Globus | Wl @
L) Launch pre- Process/
&7 Transfer processing generate
i { raw files job images

Carbon!
ETrT=————— Correct,
s - classify, [=
Share Transfer funcX refine, ...
@ @ / |)
Set access Move final Add

controls files to repo Metadata

High energy diffraction microscopy

I -
- -
- -

- ™

s ~<_ Argonne
=

Data center/ Model

Edge computer 5 seconds
- Al computer repository

Ultra-high- N Trained models

~

rate data (:l

econds"'""'/ |

Training data r—

Beamline
Rediced? 7 seconds
filtered data
7+19+5=31s Simulated
| data |
Other analyses

Py N Conventional Training data

y 4Y Esnet supercomputer repository

-’ ENERGY SCIENCES NETWORK

https://doi.org/10.48550/arXiv.2105.13967 19

https://doi.org/10.48550/arXiv.2105.13967

Common use case 3: funcX as a platform

Build new applications and services that seamlessly execute application components or

user workloads on remote resources

Advantages:

- Robust, secure, and scalable platform for managing parallel and distributed
execution across a federated ecosystem of computing endpoints

- Simple cloud-based APl and Python SDK for integration

The Data and Learning Hub for Science (DLHub)

Model Library Models Data Sources

Databases, MDF, Other
Query | Publish APls

Data Streams

A hosted service that enables researchers to find, share, publish, and run machine

learning models and discover training data for science. funcX enables remote inference
on specialized resources.

(Chard et al. https://arxiv.org/pdf/1811.11213)

1.0
oz . ogg
8%
3 o3 e
Publishf Train L
Pl Deploy+ I Data Stores .
_ ngest| <& 0 O O Predict %% w03
—— — —— - 2Zr oo 028 os ors w V
0g-loss:

Xtract: automated bgk metadata extraction

&)
REST Services n

Extractor Registry Container Registry ~ Metadata Registry

Container Z | Container

An automated and scalable system for bulk metadata extraction from large,
distributed research data repositories. Xtract orchestrates the application of
metadata extractors to groups of files, using funcX to dispatch extractors to data.
(Skluzacek et al. https://doi.org/10.1145/3431379.3460636) 0

https://doi.org/10.1145/3431379.3460636

Manufacturing and machine learning

Flame spray
pyrolysis, MERF

K § MINIO

/The Manufacturing and ML platform (MDML)\

1. Instrument sensors
stream data to the MDML

2. Use FaaS to analyze
data on-demand

Compute and storage continuum

Grafana Real-Time Dashboards

3. Faas tasks distributed
across the computing continuum

4. Results are used to
guide the experiment

21

funcX usage is growing rapidly

231,000 17.2 million

registered functions function invocations

335 3683 121s

_ _ average function
users registered endpoints runtime

Transform laptops, clusters, clouds into function
serving endpoints 4

= Python-based agent and pip installable PR SR e =eneigo i
locally or in Conda

= Elastically provisions resources from
local, cluster, or cloud system

— Using Parsl library

= Manages concurrent execution on
provisioned resources

= Optionally manages execution in
Docker, Singularity, Shifter containers

= Share endpoints with collaborators

$ funcx-endpoint configure myep

$ funcx-endpoint start myep

23

Register and share functions

Create funcX client (and authenticate)

from funcx.sdk.client import FuncXClient

fxc = FuncXClient()

Define and register Python function

def hello world():
return "Hello World!"

func_uuid = fxc.register_function(hello_world)
print(func_uuid)

mraitoa (dnrait areco) e |

;

£ mrait o (1 nraat roro

|

def compute (input args) :
do something
return results

24

Execute tasks on any accessible endpoint
Select: function ID, endpoint ID, and input

)
qpyter Riegl 2
tutorial_endpoint = "4b116d3c-1703-4f8f-9f6f-38921e5864df"’ <[/L

arguments
res = fxc.run(endpoint_id=tutorial_endpoint,
function_id=func_uuid,
argl, arg2, arg3)

Retrieve results asynchronously (funcX
stores results in the cloud)

print(fxc.get_result(res))

25

funcX scales to 100K+ workers

e funcX endpoints deployed on ALCF Theta and NERSC Cori

e Strong scaling (100K concurrent functions) shows good scaling up to 2K
containers even with short no-op/sleep tasks

* Weak scaling (10 tasks per container) scales to 131K concurrent
containers (1.3M tasks)

10%5

1033 3
w E 0]
() 3
E_ 2107
= 1023] .
S S 102
o 1 no-op (Theta) o 1077
[T no-op (Cori) s 3
a2 104 1s sleep (Theta) ol :
g : 1s sleep ideal £ 104
O] 1min stress (Theta) S]
1min stress ideal o]

0t 102 103 B R (e YO Y P E IV TIY (I 1Y

Number of containers Number of containers

How can we improve data management to/from/between
functions?

= Research functions are reliant on data

Input, output, and between functions

Federated environments may have huge
latency and bandwidth limitations

= Files, objects, other data?

= Stateless or stateful functions?

ML steering and coordination

= Research directions:

Low latency communication that supports
application patterns

Programming models that are data centric
Transparent wide-area movement
Intuitive and intelligent caching
Dataspace-like models

Transfer Rate (bytes/s)

1010

108

106 -

10° 102 104 106 108 1010 1012 1014

Data Size (bytes)

27

How can we reduce the overheads associated with managing
compute environments?

Unmanaged Functions in one OS Container

H . . 0S-Level Container -
= Container technologies are becoming MasterProgram | |- A A
increasingly diverse (Docker, Singularity, - . =
. . = ~ A A
Firecracker, etc.); no one solution works FILES
everywhere -
= Containers are relatively heavyweight - -
(especially those used in HPC environments) Master Program | __—|-Afa | " fir
- - o) call f(x), g(y). h(z) \\ = o]
= Programming virtualization faster, yet insecure A= | A [=]

L

[

= Research directions:

— New methods at the function level for

® C(Creating execution environment
e Sandboxing execution

Lightweight Function Monitors

T. Shafter, et al. Lightweight Function Monitors (LFMs) @IPDPS

e Managing resource usage

28

Can we balance the trade off between start time and resource
utilization?

2
1;' &'@. ° o Z import .
. . - O o i s
e Cold-starts are challenging in the cloud ol B2S S I instal :
o . Il download -
and more so on research Cl 2 . 280 g
. . o I 052832820 g
o Node Acquisition: For endpoints in HPC ‘; iGN SN B8Lg 2
e
clusters, latency of allocating nodes 0- =
2822233553888 22895%2
. . . . QL Q= S 25 7]
o Container Instantiation: For functions that ezpgss=Sefcgrgecis 2
. . . g 0 oz g 2 @ o @
require containers, starting them Es ES 7 g% =5
. . . . PyPI Package
o Package Loading: Installing and importing
- ShImzort interpreter time : - ShareIFnS'xportnumpy':ime 25— rEFISmpc)rtscipytime
necessary packages 8 |- |y (et iy Bt LA
£ £ 15| R
£ 101 2 8 15
% %m : gm :
. . o 5] o o
e Research directions: - R I .
. o 2 [32 128 512 2 8 32 128 512 2 8 32 128 512
o Lightweight virtualization (e.g., Firecracker) ey Ketd oo W
o Intelligent environment caching, transfer, =~ F»= =y 2 f e e | Basel
loading fn Z £ 00|
2 [] 32 128 : 512 2 8 32 128 - 512 k 2 8 32 128 512

Number of nodes Number of nodes Number of nodes
ra)

Can we efficiently schedule function executions in a federated

environment?

= We have an environment with varying
performance and overheads

— Execution, transfer, cold start, ...
= Delta: Experiment with scheduling across
heterogenous funcX endpoints

— Raspberry Pis, Desktops, Cloud instances,
GPUs

— Three scheduling algorithms: Round robin,
Fastest endpoint, smallest ETA

— Smaller tasks distributed across slower
endpoints

= Research directions:
— Modelling various overheads

— New FaaS scheduling algorithms
— Workflow scheduling

Fraction of Tasks

I
X

60%

Fraction of Tasks

0%

Fraction of Tasks

0%

Round-Robin

N
]
>

._.
3
B

,_.
N
X

2
B

I file-1/O (large)
m file-1/O (medium)
= file-1/O (small)

B map-reduce (large)
B map-reduce (medium)
[map-reduce (small)

luniuﬂinllu

B matmul (large)
- matmul (medium)
matmul (small)

ans 3 ed QoW deS\(topg des\“op ot des\(‘op n\!cme e vt gev?

Fastest-Endpoint

40%

20%

- | |

pu—— | —

-3 -2 -3 d -1 -2 -1 -2
ov o o a ws,{&a—“";ow_desk‘f:\sg_desk‘?:ﬁ_desk“"f\amcofeman\,cofe gpY gpV

Smallest-ETA

20%

15%

10%

5%

[eraluabhi

o o2 o2 s m\ow des\‘mgg des\‘“’p " des\(tov i vcore a0 \Ico\—e’l 9oV A p\,\?.

How should we deal with the other hard stuff: security,
policies, regulations, ...?

= FaaS creates new security challenges
— Simple sharing of functions and endpoints, remote access to resources,
containerized execution environments, ...
— Likely an attractive target to attackers

= Research directions:
— Scalable monitoring, logging, auditing
— Web-based authentication and authorization frameworks
— Container/function security (e.g., application whitelists)

31

Can we make it as easy to compute remotely as we compute
locally?

Increasing heterogeneity makes this:

— necessary (to improve efficiency and gain access
to specialized capabilities)

— challenging (to abstract differences between
systems)

Inflexible authentication and authorization

models (e.g., 2FA)

Widely varying performance makes it hard

to optimize performance

Diverse workloads
— Event-based and interactive computing impose
real-time requirements

— Machine learning steering requires iterative
feedback loops

1.0

0.8

0.6

0.4

Task Throughput (normalized)

0.0

42 Years of Microprocessor Trend Data

~d # 1 Transistors
a8 © (thousands)
Al
24, :
LAaats o1 Single-Thread
(X o Performance
BN T] > S | (SpecINT x 10%)

Frequency (MHz)
* Typical Power
-3 v',;\a"ﬁ"f '.: { (watts)
Ll
.2 P21 _| Number of
® Logical Cores

1970

Original data up 1o the year 2010 collected and plotied

L L
1990 2000 2010 2020
Year
by M. Horowitz, F. Labonte, O. Shacham, K. Okkotun, L Hammond, and C. Banten

New plot and data colected for 2010-2017 by K. Rupp

m map-reduce

. matmul
. file-l/O
- -
1 2 3 d 5 2 oud 2
o o b aws-ﬁa’“:ow—de"k‘:yg-des“::st—des\d?\)anv°°'emar\‘f°°re 9PV gpV
ases
& N
[[[1] NVIDIA. EV)

Lessons learned applying funcX to science use cases

Abstracts the complexity of using diverse compute resources
Simplicity: automatic scaling, single interface

Flexible web-based authentication model

Enables event-based processing and automated pipelines
Increases portability between sites, systems, etc.

Resources can be used efficiently and opportunistically
Enables secure function/endpoint sharing with collaborators

« FaaS is not suitable for some applications

« Ratio of data size to compute must be reasonable

« Containerization does not always provide entirely portable codes

« (Coarse allocation models do not map well to fine grain/short functions
« Decomposing applications is not always easy (or possible)

33

Parsl & funcX Fest
2022 funcx.org

Parsl & funcX Fest 2022 - The Parsl/funcX Community Meeting (Sep 13-14)

Join us for the second Parsl| & funcXFest Community Meeting. The meeting will be held as a hybrid meeting on September 13-14, 2022. The in-person
component will be held at the University of Chicago.

The meeting will bring together researchers, developers, and cyberinfrastructure experts from around the world to discuss experiences using and
developing funcX and Parsl. Parsl is a parallel programming library and underpins funcX's endpoint software.

Registration (free): https://forms.gle/TEeuGPo4AMwWHNZML79. We invite lightning talks from the community and would love to hear about your recent
work.

We have limited travel support available to attend the workshop. Please contact Kyle Chard (chard@uchicago.edu) for information.

Agenda

Tuesday, September 13,12 pm - 5 pm CDT (17:00 - 22:00 UTC)
12:00 - 1:00 pm Lunch

1:00 pm - Welcome! - Kyle Chard, University of Chicago/Argonne National Laboratory. slides, video 34

funck

Federated function as a service

Use funcX to execute functions across a federated ecosystem of funcX endpoints.

https://funcx.org

https://funcx.org/binder

foster@uchicago.edu

