

Towards Efficient Oversubscription: On the Cost and Benefit of Event-Based Communication in MPI

Jan Bierbaum, Maksym Planeta, Hermann Härtig

Classical MPI Programming

- Bulk synchronous parallel
- One rank/process per CPU core
- OS-bypass communication
- Polling for completion

Classical MPI Programming

- Bulk synchronous parallel
- One rank/process per CPU core
- OS-bypass communication
- Polling for completion

Imbalance

Classical MPI Programming

- Bulk synchronous parallel
- One rank/process per CPU core
- OS-bypass communication
- Polling for completion

 $Imbalance \rightarrow cycles/energy\ wasted$

Load balancing

• Load balancing (effort, complexity)

- Load balancing (effort, complexity)
- Interleaving of computation & communication

- Load balancing (effort, complexity)
- Interleaving of computation & communication (effort, complexity)

- Load balancing (effort, complexity)
- Interleaving of computation & communication (effort, complexity)
- Higher-level runtimes or MPI extensions

- Load balancing (effort, complexity)
- Interleaving of computation & communication (effort, complexity)
- Higher-level runtimes or MPI extensions (effort, expertise)

- Load balancing (effort, complexity)
- Interleaving of computation & communication (effort, complexity)
- Higher-level runtimes or MPI extensions (effort, expertise)
- Oversubscription

- Load balancing (effort, complexity)
- Interleaving of computation & communication (effort, complexity)
- Higher-level runtimes or MPI extensions (effort, expertise)
- Oversubscription (efficient implementation?)

Oversubscription

- Ping-pong micro benchmark
- 2 ranks sharing 1 CPU

Oversubscription

- Ping-pong micro benchmark
- 2 ranks sharing 1 CPU
- Polling → massive overhead
- Yield = sched_yield
- Yield* = "legacy" variant of sched_yield

Event-Based Communication

- 1 Application/OS sets up communication operation
- Application polls memory for completion
- 2 OS resumes application on completion

Open MPI & UCX

 UCX as standard backend for InfiniBand

- UCX as standard backend for InfiniBand
- Open MPI uses sched_yield when oversubscribed

- UCX as standard backend for InfiniBand
- Open MPI uses sched_yield when oversubscribed
- UCX backend supports event-based communication

- UCX as standard backend for InfiniBand
- Open MPI uses sched_yield when oversubscribed
- UCX backend supports event-based communication
- Extension to Open MPI for adaptive waiting

LIBRA, an MPI Micro-Benchmark

- P2P ping-pong using blocking MPI operations
- Configurable sender delay and message size

LIBRA, an MPI Micro-Benchmark

- P2P ping-pong using blocking MPI operations
- Configurable sender delay and message size
- Measure communication latency and overall energy consumption

LIBRA, an MPI Micro-Benchmark

- P2P ping-pong using blocking MPI operations
- Configurable sender delay and message size
- Measure communication latency and overall energy consumption

Evaluation: Setup

- High Performance Computing and Storage Complex ("Taurus") at TU Dresden:
 - 2 × 12-core Intel Xeon E5-2680 v3 @ 2.50 GHz
 - Mellanox Connect-IB
 - "High Definition Energy Efficiency Monitoring" (HDEEM)
 - Exclusively allocated node

Evaluation: Setup

- High Performance Computing and Storage Complex ("Taurus") at TU Dresden:
 - 2 × 12-core Intel Xeon E5-2680 v3 @ 2.50 GHz
 - Mellanox Connect-IB
 - "High Definition Energy Efficiency Monitoring" (HDEEM)
 - Exclusively allocated node
- LIBRA with ranks pinned to dedicated CPU
 - Rank 0: polling mode
 - Rank 1: polling / event-based mode

Evaluation: Latency (InfiniBand)

Evaluation: Latency (InfiniBand)

Evaluation: Energy of the Node (InfiniBand)

Conclusion

Summary

- sched_yield suboptimal for oversubscription
- Event-based communication in Open MPI with minimal code changes
- LIBRA micro-benchmark

Conclusion

Summary

- sched_yield suboptimal for oversubscription
- Event-based communication in Open MPI with minimal code changes
- LIBRA micro-benchmark
- Latency: Overhead of pprox 90 μs for small messages
- CPU energy: Savings of >10% for longer sender delays

Conclusion

Summary

- sched_yield suboptimal for oversubscription
- Event-based communication in Open MPI with minimal code changes
- LIBRA micro-benchmark
- Latency: Overhead of pprox 90 μs for small messages
- CPU energy: Savings of >10% for longer sender delays

Outlook

- Identify and mitigate sources of latency overhead
- Apply event-based communication to oversubscription of applications

sched_yield in Linux

- CFS (Completely Fair Scheduler) based on "virtual runtime"
- sched_yield well defined only for RT schedulers
- Implementation change in Linux 3.0

sched_yield in Linux

- CFS (Completely Fair Scheduler) based on "virtual runtime"
- sched_yield well defined only for RT schedulers
- Implementation change in Linux 3.0
- Busy loop micro-benchmark: fixed runtime

Evaluation: Energy of CPU 1 (InfiniBand)

