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The parallel software stack has ossified
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Good position to rethink the parallel HW/SW stack



Why Change? 
Limitations of the Parallel HW/SW Stack
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TLBs and addr
translation HW

+ Simplicity for programmer
+ Efficient HW

- Design baked into HW
- Workloads changing
- SASOS increasingly common
- Power consumption

But OS, compiler, and HW all make assumptions about 
address spaces and translation!



Why Change?
Limitations of the Parallel HW/SW Stack
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HW cache coherence

+ Enables efficient shared memory
+ Abstraction (hardware ”takes care 
of it”)

- Not all workloads need
coherence

- False sharing
- No SW control (hidden from OS, 

language)

But OS, compiler, and HW all make assumptions about 
coherence!



Many assumptions span the stack…

• Timing
• Synchronization
• Coherence 
• Address Translation
• Execution contexts
• Scheduling (polling, lack of real-time, etc.)
• …
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Interweaving: reconsider these at all layers
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Nautilus Kernel
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Interweaving Example:
CARAT: Compiler and Runtime-based Address Translation

• Address translation (via paging) is universal, yet showing its age
• TLB misses are a significant performance inhibitor, including in HPC
• TLBs/paging limits cache design
• Fundamentally a hardware/kernel co-design

• Can we do better than paging?
• CARAT uses physical addresses instead (no paging, no TLB)
• Protection and memory migration achieved via compiler/kernel co-design

• Proof-of-concept shows feasibility

Kyle C. Hale 12



Traditional Address Translation
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CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation PLDI ’20, June 15–20, 2020, London, UK
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(a) Traditional (b) CARAT
Figure 1. Comparison of the traditional address translation (paging) model with the CARAT model.

Address translation happens at page granularity, so in-
stead of translating VAddr!PAddr, only the bits of the VAddr
that contain the virtual page number (VPN) are translated to
(and replaced by) bits that contain the physical page number
(PPN): VPN!PPN. Technically, the translation is VPN!PTE,
where the PTE (page table entry) contains both the PPN, ac-
cess permissions and metadata about the VPN and PPN.
VPN!PPN is a mapping from occupied virtual pages in

the current virtual address space to the occupied physical
pages in the physical address space. This mapping is deter-
mined by the kernel and it may change over time. Current
systems represent mappings as radix trees.

The two central actors in address translation are the trans-
lation lookaside bu�er (TLB) and the pagewalker. The TLB
caches translations that have been read from the in-memory
page tables, and its extremely high hit rate is essential to pro-
viding modern address translation with little performance
overhead compared to using physical addressing. When the
TLB misses, the pagewalker traverses the in-memory page
tables using physical addresses until it �nds the relevant PTE
and places the mapping into the TLB.

2.2 CARAT Model
In the CARAT model (Figure 1(b)), the hardware can be
considerably simpli�ed, but the compilation and run-time
environment are considerably more complicated. Because
only physical addresses are used, the TLB and pagewalker
can be eliminated. In a system that provides both the tradi-
tional and CARAT models, the kernel could switch between
them with simple hardware support. For example, on x64,
physical addressing could be reintroduced, allowing a kernel
write to set CR0.PG to zero to disable paging, a capability
already present when an x64 processor is run in 32-bit mode.

Compile-time: The compilation process in CARAT in-
volves three additional steps compared to the traditional
model. The �rst additional step is a set of transformations
that serve as the basis for making the executing process both
safe and malleable. Allocation tracking introduces instrumen-
tation code that invokes the runtime whenever there is a
memory allocation. An allocation is a broad term in CARAT,
and includes both static allocations (e.g., globals), and dy-
namic allocations (e.g., mallocs, stack allocs, etc). Escape
tracking is similar, and introduces instrumentation code that
invokes the runtime whenever a pointer is copied (an escape)
or destroyed. Allocations and pointer escapes from the initial
state of the program’s globals are recorded at load time.
Conceptually, guard injection introduces a guard to ev-

ery load, store, and call instruction. A guard veri�es that
the physical address about to be used by the instruction is
within the restricted set allowed by the kernel and that the
appropriate access permissions hold. The kernel essentially
provides a dynamic set of address regions and their privileges
to the CARAT runtime, and a guard checks the address range
of the prospective access against this set.

Obviously, if each relevant instruction truly were guarded,
the overhead of CARATwould be abysmal. As we describe in
more detail in Sections 3–4, the CARAT model heavily relies
on compiler optimization technology, including new CARAT-
speci�c optimizations, to eliminate, combine, or amortize
guards in many situations. An important result is that this is
possible in a wide range of programs.

It may seem strange to guard call instructions, but this is
necessary since the call’s push of the return address onto the
stack could overrun a valid region. Additionally, the prologue
and epilogue code the compiler produces for the callee may
also perform stack accesses. A call guard veri�es that all

331



CARAT: Compiler and Runtime-based Address Translation 
[PLDI ‘20]
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CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation PLDI ’20, June 15–20, 2020, London, UK
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(a) Traditional (b) CARAT
Figure 1. Comparison of the traditional address translation (paging) model with the CARAT model.

Address translation happens at page granularity, so in-
stead of translating VAddr!PAddr, only the bits of the VAddr
that contain the virtual page number (VPN) are translated to
(and replaced by) bits that contain the physical page number
(PPN): VPN!PPN. Technically, the translation is VPN!PTE,
where the PTE (page table entry) contains both the PPN, ac-
cess permissions and metadata about the VPN and PPN.
VPN!PPN is a mapping from occupied virtual pages in

the current virtual address space to the occupied physical
pages in the physical address space. This mapping is deter-
mined by the kernel and it may change over time. Current
systems represent mappings as radix trees.

The two central actors in address translation are the trans-
lation lookaside bu�er (TLB) and the pagewalker. The TLB
caches translations that have been read from the in-memory
page tables, and its extremely high hit rate is essential to pro-
viding modern address translation with little performance
overhead compared to using physical addressing. When the
TLB misses, the pagewalker traverses the in-memory page
tables using physical addresses until it �nds the relevant PTE
and places the mapping into the TLB.

2.2 CARAT Model
In the CARAT model (Figure 1(b)), the hardware can be
considerably simpli�ed, but the compilation and run-time
environment are considerably more complicated. Because
only physical addresses are used, the TLB and pagewalker
can be eliminated. In a system that provides both the tradi-
tional and CARAT models, the kernel could switch between
them with simple hardware support. For example, on x64,
physical addressing could be reintroduced, allowing a kernel
write to set CR0.PG to zero to disable paging, a capability
already present when an x64 processor is run in 32-bit mode.

Compile-time: The compilation process in CARAT in-
volves three additional steps compared to the traditional
model. The �rst additional step is a set of transformations
that serve as the basis for making the executing process both
safe and malleable. Allocation tracking introduces instrumen-
tation code that invokes the runtime whenever there is a
memory allocation. An allocation is a broad term in CARAT,
and includes both static allocations (e.g., globals), and dy-
namic allocations (e.g., mallocs, stack allocs, etc). Escape
tracking is similar, and introduces instrumentation code that
invokes the runtime whenever a pointer is copied (an escape)
or destroyed. Allocations and pointer escapes from the initial
state of the program’s globals are recorded at load time.
Conceptually, guard injection introduces a guard to ev-

ery load, store, and call instruction. A guard veri�es that
the physical address about to be used by the instruction is
within the restricted set allowed by the kernel and that the
appropriate access permissions hold. The kernel essentially
provides a dynamic set of address regions and their privileges
to the CARAT runtime, and a guard checks the address range
of the prospective access against this set.

Obviously, if each relevant instruction truly were guarded,
the overhead of CARATwould be abysmal. As we describe in
more detail in Sections 3–4, the CARAT model heavily relies
on compiler optimization technology, including new CARAT-
speci�c optimizations, to eliminate, combine, or amortize
guards in many situations. An important result is that this is
possible in a wide range of programs.

It may seem strange to guard call instructions, but this is
necessary since the call’s push of the return address onto the
stack could overrun a valid region. Additionally, the prologue
and epilogue code the compiler produces for the callee may
also perform stack accesses. A call guard veri�es that all
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CARAT: Compiler and Runtime-based Address Translation 
[In Submission Work]

• CARAT integrated into Nautilus Kernel
• Linux-compatible process abstraction…
• …but executable runs as a component of the kernel
• … yet with protection and memory migration available
• All while using physical addressing

Kyle C. Hale 15



Interweaving Example:
Compiler-based Timing (CT)
• Timing is traditionally driven by hardware timer interrupts
• Interrupt latency is high and not getting lower

• Limits granularity of many parallel constructs
• E.g. preemptive threads

• Can we replace hardware timers with callbacks introduced by the 
compiler throughout the kernel and application codebase?  
• Yes.   And achieve similar precision.  With 6x lower overhead.
• Enabling preemptive threads with 4x smaller granularity

Kyle C. Hale 16



Traditional Timing
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(a) Traditional Hardware-based Timing (b) Compiler-based Timing
Fig. 1. Comparison of traditional hardware-based timing and compiler-based timing models. Fibers are highlighted as they are our proof-of-concept service.
In an all-kernel system with the traditional hardware-based timing model, the signal/upcall cost is avoided, but interrupt and MMIO costs remain.

instruction of the interrupt handler within the Nautilus kernel.
Three machines are considered. KNL and R415 were described
previously. R815 is a Dell R815 with 4 2.1 GHz AMD 6272
processors. The measurement does not include the unwinding
of the interrupt dispatch, which adds several hundred cycles.

Even in a model, such as with Nautilus, which has no
kernel/user distinction, the overhead of interrupt dispatch and
reconfiguring the hardware time (primarily the former) limits
the timing resolution that is practically possible, regardless
of the resolution of the hardware timer itself. This limitation
on timing resolution cascades into limitations on the services
that depend on timing. Consider the 897 cycles for KNL-K
shown in Figure 2. This places a hard limit on the resolution
of hardware-based timing of at least this number of cycles.
As described elsewhere [13], the total interrupt cost on this
platform is about 1100 cycles, which is the practical timing
limit. Even for the lowest overhead platform (R415-K), the
practical timing limit is well over 800 cycles.

For scheduling fine granularity work, the practical timing
limit places a limit on the granularity that can be handled in a
system that provides preemption. As previously reported [21],
preemptive thread context switches in Nautilus can be done
in 1760 cycles (KNL-K) and 1391 cycles (R415-K), ignoring
floating point context switching and using a constant time
scheduler. These are among the fastest preemptive scheduling
results reported. The current context switch cost on our testbed
is about 2000 cycles, in part because of a real-time scheduler.

To avoid these hardware timing-limited high overheads for
preemption, fiber or task implementations that are intended
to support fine granularity workloads provide no preemption,
and, indeed, often do not even support blocking. This places
the onus on the developer, compiler, and/or run-time system
to produce ensembles of fibers and/or tasks that provably do
not require preemption in order to achieve correctness.

Although Figure 1(a) illustrates a Linux-like kernel, Nau-
tilus, prior to compiler-based timing, is only slight different.
The signal/upcall component is a simple function call in
Nautilus, but the interrupt and MMIO overheads remain. More
details of Nautilus’s timing infrastructure and real-time thread
and task framework are given in Section IV.

B. Proposed compiler-based timing

Figure 1(b) illustrates how compiler-based timing would
operate. In contrast to the traditional model, there is little role
for the hardware timing mechanisms. In fact, the APIC timer
can be simply disabled. This avoids the overhead both of its
interrupts and of configuring it via MMIO. Even if hardware
timer interrupts would be needed for other reasons (e.g., a
watch dog), the rate of timer interrupts would be much lower
than in the traditional model.

The cost is now borne by the compiler side. All source code
(or at least the compiler’s intermediate representation (IR) of
it) for the kernel, run-time system, and application, is supplied
to the compilation process. A new compilation step, whole
program integration, brings the totality of IR-level code, into
a single IR-level representation. In addition, we are supplied
with a target timer resolution.

In the critical next step, a new code transformation, time
hook trigger injection, is applied. This transformation consid-
ers all statically discoverable code paths through the entire
codebase and adds instrumentation to each one. The instru-
mentation consists of calls to a trigger fire function, which
is exported by component of the kernel. The transformation
places these calls such that, at run-time, the calls will occur
at the target timer resolution (or higher), regardless of the
dynamic control flow path being taken by each CPU. This is
a non-trivial undertaking for several reasons. First, while the
timing requirement is placed on the object code that will be



Compiler-based Timing [SC ‘20]
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(a) Traditional Hardware-based Timing (b) Compiler-based Timing
Fig. 1. Comparison of traditional hardware-based timing and compiler-based timing models. Fibers are highlighted as they are our proof-of-concept service.
In an all-kernel system with the traditional hardware-based timing model, the signal/upcall cost is avoided, but interrupt and MMIO costs remain.

instruction of the interrupt handler within the Nautilus kernel.
Three machines are considered. KNL and R415 were described
previously. R815 is a Dell R815 with 4 2.1 GHz AMD 6272
processors. The measurement does not include the unwinding
of the interrupt dispatch, which adds several hundred cycles.

Even in a model, such as with Nautilus, which has no
kernel/user distinction, the overhead of interrupt dispatch and
reconfiguring the hardware time (primarily the former) limits
the timing resolution that is practically possible, regardless
of the resolution of the hardware timer itself. This limitation
on timing resolution cascades into limitations on the services
that depend on timing. Consider the 897 cycles for KNL-K
shown in Figure 2. This places a hard limit on the resolution
of hardware-based timing of at least this number of cycles.
As described elsewhere [13], the total interrupt cost on this
platform is about 1100 cycles, which is the practical timing
limit. Even for the lowest overhead platform (R415-K), the
practical timing limit is well over 800 cycles.

For scheduling fine granularity work, the practical timing
limit places a limit on the granularity that can be handled in a
system that provides preemption. As previously reported [21],
preemptive thread context switches in Nautilus can be done
in 1760 cycles (KNL-K) and 1391 cycles (R415-K), ignoring
floating point context switching and using a constant time
scheduler. These are among the fastest preemptive scheduling
results reported. The current context switch cost on our testbed
is about 2000 cycles, in part because of a real-time scheduler.

To avoid these hardware timing-limited high overheads for
preemption, fiber or task implementations that are intended
to support fine granularity workloads provide no preemption,
and, indeed, often do not even support blocking. This places
the onus on the developer, compiler, and/or run-time system
to produce ensembles of fibers and/or tasks that provably do
not require preemption in order to achieve correctness.

Although Figure 1(a) illustrates a Linux-like kernel, Nau-
tilus, prior to compiler-based timing, is only slight different.
The signal/upcall component is a simple function call in
Nautilus, but the interrupt and MMIO overheads remain. More
details of Nautilus’s timing infrastructure and real-time thread
and task framework are given in Section IV.

B. Proposed compiler-based timing

Figure 1(b) illustrates how compiler-based timing would
operate. In contrast to the traditional model, there is little role
for the hardware timing mechanisms. In fact, the APIC timer
can be simply disabled. This avoids the overhead both of its
interrupts and of configuring it via MMIO. Even if hardware
timer interrupts would be needed for other reasons (e.g., a
watch dog), the rate of timer interrupts would be much lower
than in the traditional model.

The cost is now borne by the compiler side. All source code
(or at least the compiler’s intermediate representation (IR) of
it) for the kernel, run-time system, and application, is supplied
to the compilation process. A new compilation step, whole
program integration, brings the totality of IR-level code, into
a single IR-level representation. In addition, we are supplied
with a target timer resolution.

In the critical next step, a new code transformation, time
hook trigger injection, is applied. This transformation consid-
ers all statically discoverable code paths through the entire
codebase and adds instrumentation to each one. The instru-
mentation consists of calls to a trigger fire function, which
is exported by component of the kernel. The transformation
places these calls such that, at run-time, the calls will occur
at the target timer resolution (or higher), regardless of the
dynamic control flow path being taken by each CPU. This is
a non-trivial undertaking for several reasons. First, while the
timing requirement is placed on the object code that will be
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The 
Interwoven 

Stack

http://interweaving.org

HLL + OS
[PLDI ’21]

OS + Runtime + 
Compiler
[SC ’21]

Compiler + OS
[SC ’20]

OS + HW
[MASCOTS ‘19]

OS + Runtime + 
Compiler
[PLDI ‘20]

OS + Runtime 
[HPDC ‘15]

see it 
wednesday

Find out more…

Not shown:  
Hard Real-time Scheduling for Parallelism (OS+Runtime) [HPDC ‘18]
Fast HW Barriers (HW+OS+Runtime) [HPDC ‘19]
Fast Queuing (Runtime+Compiler) [MASCOTS ‘21]
Fast Events (HW+OS) [MASCOTS ’18]
…and others



Interweaving Teaser:
Function-granularity Virtualization
• More need for single-function execution contexts…even in HPC
• But virtualization platforms not really designed for this
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virtine int foo() {
// isolated compute
return 0;

}

Very low overheads for HLL
function invocation (FULLY ISOLATED)



Interweaving Teaser:
OpenMP in the Kernel
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Kernel context can have benefits for parallelism (see 
HRTs/Nautilus, HermitCore, Unikernels, etc.)

Getting there is hard though…

We compare three paths to get there!

Runtime in Kernel
(Programmer does 

legwork)

Process in Kernel
(OS dev. does 

legwork)

Custom Compilation 
for Kernel

(Compiler does 
legwork)

SC ‘21
Wednesday, 4PM 

(227-228)

Speedups not the point, 
but, spoiler alert, 

there are speedups



What’s Next

• Selective Coherence
• Blended Device Drivers
• Pipeline Interrupts
• Bespoke Execution Contexts
• More emphasis on HLLs
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What’s Next

• Selective coherence
• Blended Device Drivers
• Pipeline Interrupts
• Bespoke Execution Contexts
• More emphasis on HLLs
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Using high-level program information to 
inform coherence protocol:
- ~46% speedup
- ~53% interconnect energy reduction



What’s Next

• Selective coherence
• Blending
• Pipeline Interrupts
• Bespoke Execution Contexts
• More emphasis on HLLs
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Custom per-process ABIs

Blended device drivers

Local machine Server

Swap

Fetch

Disaggregated Memory

Compiler-driven

lightweight user-
level polling

e.g. Shenango, 
DPDK

compiler

user code

poll()

poll()

app code

kernel
code

Interrupt-free 
Systems



Students and Collaborators

• Many students have or are contributing to these efforts
• Complete list: http://interweaving.org
• You should hire them!

• Work presented here:  
• Brian Suchy, Mike Wilkins, Souradip Ghosh, Brian Homerding, Jiacheng Ma, Wenyi Ma, 

Michael Cuevas, Zhen Huang, Conghao Liu, Brian Tauro, Nick Wanninger, Josh Bowden, Enrico 
Deiana, Vijay Kandihah, Drew Kersnar, Alex Bernat, Gaurav Chaudhary, Siyuan Chai, Kevin 
McAfee, Kevin Mendoza Tudares

• Heartbeat is in collaboration with Umut Acar, Mike Rainey, and Ryan Newton at 
CMU; Selective coherence is in collaboration with Umut Acar and Sam Westrick
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Thanks!
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The Interweaving Project
http://interweaving.org

Check out our OpenMP paper @ SC!
Wednesday, 4PM (227-228)

Thanks to our sponsors: Thanks to our sponsors:

Northwestern 
Compiler
Group


