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Motivation

Microkernels in a nutshell
No isolation between components in monolithic OS
Single exploitable bug anywhere→ game over
Microkernel-based systems split OS into isolated and unprivileged components
96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]

Microkernel-based systems have proven valuable for other objectives:
Low-noise execution, real time, flexibility, . . .
Recently, new challenges are coming from the hardware side

Heterogeneous systems
Third-party components
Security issues of complex general-purpose cores

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3 / 19



Motivation

Microkernels in a nutshell
No isolation between components in monolithic OS
Single exploitable bug anywhere→ game over
Microkernel-based systems split OS into isolated and unprivileged components
96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]

Microkernel-based systems have proven valuable for other objectives:
Low-noise execution, real time, flexibility, . . .

Recently, new challenges are coming from the hardware side
Heterogeneous systems
Third-party components
Security issues of complex general-purpose cores

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3 / 19



Motivation

Microkernels in a nutshell
No isolation between components in monolithic OS
Single exploitable bug anywhere→ game over
Microkernel-based systems split OS into isolated and unprivileged components
96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]

Microkernel-based systems have proven valuable for other objectives:
Low-noise execution, real time, flexibility, . . .
Recently, new challenges are coming from the hardware side

Heterogeneous systems
Third-party components
Security issues of complex general-purpose cores

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3 / 19



Hardware Complexity: Heterogeneity

Demanded by performance and energy requirements

Big challenge for OSes: single shared kernel on all cores does no longer work

OSes need to be prepared for compute units with di�erent feature sets
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Hardware Complexity: Untrusted Hardware Components

Provided by third-party vendors

Bug in such a component can compromise whole system (see Broadcom incident)

Side channels in modern cores allow a�ackers to leak private data; some bypass
all security measures of the core (address spaces, virtualization, . . . )

Have been lurking in CPUs for many years, also due to complexity
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Microkernel-based System as Foundation
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M3 System Architecture [1]
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Kernel manages,
TCU enforces

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
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µ-kernel-ideas applied to HW:

µ-kernel contains essence
of monolithic kernel

TCU contains essence of
µ-kernel

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
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TCU-based Communication
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M3: The Operating System

M3: Microkernel-based system for het. manycores
(or L4 ± 1)

Implemented from scratch in Rust and C++

Drivers, filesystems, etc. implemented on user tiles

Kernel manages permissions, using capabilities

TCU enforces permissions
(communication, memory access)

Kernel is independent of other tiles

Kernel M3FS

pipes App

App App
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M3-based Projects

M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, Hermann Härtig, USENIX ATC 2019

SemperOS: A Distributed Capability System
Ma�hias Hille, Nils Asmussen, Pramod Bhatotia, Hermann Härtig, USENIX ATC 2019

Untrusted Cores in a Shared System
Under review for ASPLOS 2022

Secure communication between devices (WIP)

Compiler-based separation of components (WIP)
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OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols
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Generic Protocol

IFFT (cli) FS (srv)

DRAM

TCU TCU

S R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
Msg channel between client and
server

req(in) for next input piece
req(out) for next output piece

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles
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Additions to Accelerator

Scratchpad memory (SPM)

Accelerator

TCUASM

S M S M

IN OUT

O�-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel
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Assisted vs. Autonomous
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Accelerator Chains: Evaluation

FFT MUL IFFTInput Output
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1..4 chains
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Accelerator Chains: Results
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Accelerator Chains: Results (PCIe-like Latency)
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Performance Comparison with Linux
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Conclusion

M3 applies microkernel ideas to hardware
Add trusted communication component (TCU) next to each compute unit
TCU contains essence of a traditional microkernel
Microkernel-based system called M3 takes advantage of TCU

M3x introduced accelerator chaining
Improves performance compared to traditional approach
Reduces CPU load to almost zero→ accelerators run autonomously
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