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Motivation h 1

® Microkernels in a nutshell
@ No isolation between components in monolithic OS
® Single exploitable bug anywhere — game over
® Microkernel-based systems split OS into isolated and unprivileged components
® 96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3/19



| ]
Motivation h [

® Microkernels in a nutshell
@ No isolation between components in monolithic OS
® Single exploitable bug anywhere — game over
® Microkernel-based systems split OS into isolated and unprivileged components
® 96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]
® Microkernel-based systems have proven valuable for other objectives:

Low-noise execution, real time, flexibility, ...

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3/19



| ]
Motivation h [

® Microkernels in a nutshell
@ No isolation between components in monolithic OS
® Single exploitable bug anywhere — game over
® Microkernel-based systems split OS into isolated and unprivileged components
® 96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]
® Microkernel-based systems have proven valuable for other objectives:
Low-noise execution, real time, flexibility, ...
® Recently, new challenges are coming from the hardware side

® Heterogeneous systems
® Third-party components

® Security issues of complex general-purpose cores

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
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Hardware Complexity: Heterogeneity h-l

® Demanded by performance and energy requirements
e Big challenge for OSes: single shared kernel on all cores does no longer work

® OSes need to be prepared for compute units with different feature sets

4/19



Hardware Complexity: Untrusted Hardware Components h-|

53]

SAMSUNG

Exynos Modem

Provided by third-party vendors

Bug in such a component can compromise whole system (see Broadcom incident)

Side channels in modern cores allow attackers to leak private data; some bypass

all security measures of the core (address spaces, virtualization, ...)

Have been lurking in CPUs for many years, also due to complexity
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M3 System Architecture [1] h-l

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
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M3 System Architecture [1] h-l
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M3 System Architecture [1] h-
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M3 System Architecture [1] h-l

Manage App App Key ideas:

® TCU as new hardware

Enforce EnforceO—QEnforceQ-l

component

e Kernel on dedicated tile

e Kernel manages,
Serv App Serv TCU enforces

Enforce( - Enforce ——Enforce

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
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M3 System Architecture [1] h-l

Manage

Enforce

App App
p-kernel-ideas applied to HW:

EnforceQ—QEnforceQ-l ® s-kernel contains essence

of monolithic kernel

Serv

Enforce( -

® TCU contains essence of

App Serv u-kernel

Enforce ——Enforce
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TCU-based Communication h-l

Kernel

TCU

TCU

TCU provides endpoints to:

® Access memory
(contiguous range, byte

granular)
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TCU-based Communication h 1
TCU provides endpoints to:
Kernel ® Access memory
\\/ (contiguous range, byte
TCU

™ TCU (5) granular)

® Receive messages into a

receive buffer

Serv App DRAM ® Send messages to a

receiving endpoint

!

TCU TCU | ® Replies for RPC
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M3: The Operating System h-l

® M3: Microkernel-based system for het. manycores

3
(or L4 +1) el IS
® |Implemented from scratch in Rust and C++ i
® Drivers, filesystems, etc. implemented on user tiles ;
- . - pipes O—O App
® Kernel manages permissions, using capabilities
® TCU enforces permissions i
(communication, memory access) o
o : App 5 T App
® Kernel is independent of other tiles
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M3-based Projects h-|

® M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, Hermann Hartig, USENIX ATC 2019

® SemperOS: A Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, Hermann Hartig, USENIX ATC 2019

e Untrusted Cores in a Shared System
Under review for ASPLOS 2022

® Secure communication between devices (WIP)

® Compiler-based separation of components (WIP)
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OS Service Access for all Tiles
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OS Service Access for all Tiles b-l

Shell Pipes and output redirect

sh$ decode in.png | Fft | mul FIfft > out.raw ) ERaElEEs

® OS must provide
int main(i
for(int i
auto re
transfe * * *
,

® Accelerators need
Vol

support for protocols
Software Hardware accelerators for

image processing
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File protocol:
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File protocol:

® Data in memory

IFFT (cli) FS (srv) ® Msg channel between client and

req(in/out)

T server
@ ' TCU ® req(in) for next input piece
\4) \/ ® req(out) for next output piece

resp(pos,len)

. DRAM |

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles
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AAA

Off-the-shelf accelerators
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Additions to Accelerator

Scratchpad memory (SPM)

A

Accelerator

T

ASM — TCU

EMEM
o

IN OUT

b

Off-the-shelf accelerators

Accelerator Support Module (ASM):
@ [nteracts with TCU and accelerator

® Implements file protocol for input and

output channel
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Accelerator Chains: Evaluation
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Accelerator Chains: Results h-l
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Accelerator Chains: Results
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Accelerator Chains: Results (PCle-like Latency) h-l
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Conclusion h I

® M3 applies microkernel ideas to hardware

® Add trusted communication component (TCU) next to each compute unit
® TCU contains essence of a traditional microkernel

® Microkernel-based system called M3 takes advantage of TCU

19/19



) .
Conclusion h I

® M3 applies microkernel ideas to hardware

® Add trusted communication component (TCU) next to each compute unit
® TCU contains essence of a traditional microkernel

® Microkernel-based system called M3 takes advantage of TCU
® M3x introduced accelerator chaining

® Improves performance compared to traditional approach

® Reduces CPU load to almost zero — accelerators run autonomously
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