
barkhauseninstitut.org

M3: Applying Microkernel-Ideas to Hardware

Nils Asmussen

ROSS, 15th November 2021

Barkhausen Institut

Research institute in Dresden, founded end of 2017

Currently about 40 people

Low-latency and secure IoT systems

Focus on research and demonstrators

Wireless RF Design Privacy

Lab

2 / 19

Barkhausen Institut

Research institute in Dresden, founded end of 2017

Currently about 40 people

Low-latency and secure IoT systems

Focus on research and demonstrators

Wireless RF Design Privacy

Lab MPSoC OS

2 / 19

Barkhausen Institut

Research institute in Dresden, founded end of 2017

Currently about 40 people

Low-latency and secure IoT systems

Focus on research and demonstrators

Wireless RF Design Privacy

Lab MPSoC OS

2 / 19

Motivation

Microkernels in a nutshell
No isolation between components in monolithic OS
Single exploitable bug anywhere→ game over
Microkernel-based systems split OS into isolated and unprivileged components
96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]

Microkernel-based systems have proven valuable for other objectives:
Low-noise execution, real time, flexibility, . . .
Recently, new challenges are coming from the hardware side

Heterogeneous systems
Third-party components
Security issues of complex general-purpose cores

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3 / 19

Motivation

Microkernels in a nutshell
No isolation between components in monolithic OS
Single exploitable bug anywhere→ game over
Microkernel-based systems split OS into isolated and unprivileged components
96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]

Microkernel-based systems have proven valuable for other objectives:
Low-noise execution, real time, flexibility, . . .

Recently, new challenges are coming from the hardware side
Heterogeneous systems
Third-party components
Security issues of complex general-purpose cores

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3 / 19

Motivation

Microkernels in a nutshell
No isolation between components in monolithic OS
Single exploitable bug anywhere→ game over
Microkernel-based systems split OS into isolated and unprivileged components
96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]

Microkernel-based systems have proven valuable for other objectives:
Low-noise execution, real time, flexibility, . . .
Recently, new challenges are coming from the hardware side

Heterogeneous systems
Third-party components
Security issues of complex general-purpose cores

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3 / 19

Hardware Complexity: Heterogeneity

Demanded by performance and energy requirements

Big challenge for OSes: single shared kernel on all cores does no longer work

OSes need to be prepared for compute units with di�erent feature sets

4 / 19

Hardware Complexity: Untrusted Hardware Components

Provided by third-party vendors

Bug in such a component can compromise whole system (see Broadcom incident)

Side channels in modern cores allow a�ackers to leak private data; some bypass
all security measures of the core (address spaces, virtualization, . . .)

Have been lurking in CPUs for many years, also due to complexity

5 / 19

Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 19

Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 19

Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 19

Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 19

Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 19

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7 / 19

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7 / 19

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7 / 19

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7 / 19

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Manage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7 / 19

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7 / 19

M3 System Architecture [1]

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

µ-kernel-ideas applied to HW:

µ-kernel contains essence
of monolithic kernel

TCU contains essence of
µ-kernel

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016

7 / 19

TCU-based Communication

Core

Core

Core

GPU TPU

DRAMServ

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM

S

R

S

R

TCU provides endpoints to:

Access memory
(contiguous range, byte
granular)

Receive messages into a
receive bu�er

Send messages to a
receiving endpoint

Replies for RPC

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
8 / 19

TCU-based Communication

Core

Core

Core

GPU TPU

DRAMServ

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM S

R

S

R

TCU provides endpoints to:

Access memory
(contiguous range, byte
granular)

Receive messages into a
receive bu�er

Send messages to a
receiving endpoint

Replies for RPC

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
8 / 19

TCU-based Communication

Core

Core

Core

GPU TPU

DRAMServ

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM S

R

S

R

TCU provides endpoints to:

Access memory
(contiguous range, byte
granular)

Receive messages into a
receive bu�er

Send messages to a
receiving endpoint

Replies for RPC

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
8 / 19

M3: The Operating System

M3: Microkernel-based system for het. manycores
(or L4 ± 1)

Implemented from scratch in Rust and C++

Drivers, filesystems, etc. implemented on user tiles

Kernel manages permissions, using capabilities

TCU enforces permissions
(communication, memory access)

Kernel is independent of other tiles

Kernel M3FS

pipes App

App App

9 / 19

M3-based Projects

M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, Hermann Härtig, USENIX ATC 2019

SemperOS: A Distributed Capability System
Ma�hias Hille, Nils Asmussen, Pramod Bhatotia, Hermann Härtig, USENIX ATC 2019

Untrusted Cores in a Shared System
Under review for ASPLOS 2022

Secure communication between devices (WIP)

Compiler-based separation of components (WIP)

10 / 19

OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols

11 / 19

OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols

11 / 19

OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware

Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols

11 / 19

OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols

11 / 19

OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols

11 / 19

OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols

11 / 19

OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols

11 / 19

OS Service Access for all Tiles

sh $ decode in.png | fft | mul | ifft > out.rawsh $ decode in.png | fft | mul | ifft > out.raw

Shell

So�ware Hardware accelerators for
image processing

Pipes and output redirect

Challenges:

OS must provide
generic protocols

Accelerators need
support for protocols

11 / 19

Generic Protocol

IFFT (cli) FS (srv)

DRAM

TCU TCU

S R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
Msg channel between client and
server

req(in) for next input piece
req(out) for next output piece

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles

12 / 19

Generic Protocol

IFFT (cli) FS (srv)

DRAM

TCU TCU

S R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory

Msg channel between client and
server

req(in) for next input piece
req(out) for next output piece

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles

12 / 19

Generic Protocol

IFFT (cli) FS (srv)

DRAM

TCU TCUS R

req(in/out)

resp(pos,len)

MM

File protocol:

Data in memory
Msg channel between client and
server

req(in) for next input piece
req(out) for next output piece

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles

12 / 19

Generic Protocol

IFFT (cli) FS (srv)

DRAM

TCU TCUS R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
Msg channel between client and
server

req(in) for next input piece
req(out) for next output piece

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles

12 / 19

Generic Protocol

IFFT (cli) FS (srv)

DRAM

TCU TCUS R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
Msg channel between client and
server

req(in) for next input piece
req(out) for next output piece

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles

12 / 19

Generic Protocol

IFFT (cli) FS (srv)

DRAM

TCU TCUS R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
Msg channel between client and
server

req(in) for next input piece
req(out) for next output piece

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles

12 / 19

Additions to Accelerator

Scratchpad memory (SPM)

Accelerator

TCUASM

S M S M

IN OUT

O�-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

13 / 19

Additions to Accelerator

Scratchpad memory (SPM)

Accelerator

TCU

ASM

S M S M

IN OUT

O�-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

13 / 19

Additions to Accelerator

Scratchpad memory (SPM)

Accelerator

TCUASM

S M S M

IN OUT

O�-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

13 / 19

Additions to Accelerator

Scratchpad memory (SPM)

Accelerator

TCUASM

S M S M

IN OUT

O�-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

13 / 19

Assisted vs. Autonomous

FFT

SPM
DMA

MUL

SPM
DMA

IFFT

SPM
DMA

OS

Driver

Input

Output

FFT

SPM
TCU

MUL

SPM
TCU

IFFT

SPM
TCU

OS

Input

Output

ASM

ASM

ASM

14 / 19

Assisted vs. Autonomous

FFT

SPM
DMA

MUL

SPM
DMA

IFFT

SPM
DMA

OS

Driver

Input

Output

FFT

SPM
TCU

MUL

SPM
TCU

IFFT

SPM
TCU

OS

Input

Output

ASM

ASM

ASM

14 / 19

Assisted vs. Autonomous

FFT

SPM
DMA

MUL

SPM
DMA

IFFT

SPM
DMA

OS

Driver

Input

Output

FFT

SPM
TCU

MUL

SPM
TCU

IFFT

SPM
TCU

OS

Input

Output

ASM

ASM

ASM

14 / 19

Assisted vs. Autonomous

FFT

SPM
DMA

MUL

SPM
DMA

IFFT

SPM
DMA

OS

Driver

Input

Output

FFT

SPM
TCU

MUL

SPM
TCU

IFFT

SPM
TCU

OS

Input

Output

ASM

ASM

ASM

14 / 19

Accelerator Chains: Evaluation

FFT MUL IFFTInput Output

FFT MUL IFFTInput Output

1..4 chains

15 / 19

Accelerator Chains: Evaluation

FFT MUL IFFTInput Output

FFT MUL IFFTInput Output

1..4 chains

15 / 19

Accelerator Chains: Results

Assisted Autonomous

1

T
im

e
(m

s)

0

5

10

15

20

2 3 4

of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

of parallel chains

16 / 19

Accelerator Chains: Results

Assisted Autonomous

1

T
im

e
(m

s)

0

5

10

15

20

2 3 4

of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

of parallel chains

16 / 19

Accelerator Chains: Results

Assisted Autonomous

1

T
im

e
(m

s)

0

5

10

15

20

2 3 4

of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

of parallel chains

16 / 19

Accelerator Chains: Results (PCIe-like Latency)

Assisted Autonomous

1

T
im

e
(m

s)

0

20

40

60

80

2 3 4

of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

of parallel chains

17 / 19

Accelerator Chains: Results (PCIe-like Latency)

Assisted Autonomous

1

T
im

e
(m

s)

0

20

40

60

80

2 3 4

of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

of parallel chains

17 / 19

Performance Comparison with Linux

M
3

L
x

tar

0
2
4
6
8

10

T
im

e
(m

s)

M
3

L
x

untar

M
3

L
x

shasum

M
3

L
x

sort

M
3

L
x

find

M
3

L
x

SQLite

M
3

L
x

LvlDB

App Xfers OS

M3 vs. Linux 4.10

Traced on Linux,
replayed on M3

M3FS vs. Linux tmpfs

Kernel App

Pager M3FS

M3: 1+3 cores

LinuxLinux: 1 core

18 / 19

Performance Comparison with Linux

M
3

L
x

tar

0
2
4
6
8

10

T
im

e
(m

s)

M
3

L
x

untar

M
3

L
x

shasum

M
3

L
x

sort

M
3

L
x

find

M
3

L
x

SQLite

M
3

L
x

LvlDB

App Xfers OS

M3 vs. Linux 4.10

Traced on Linux,
replayed on M3

M3FS vs. Linux tmpfs

Kernel App

Pager M3FS

M3: 1+3 cores

LinuxLinux: 1 core

18 / 19

Performance Comparison with Linux

M
3

L
x

tar

0
2
4
6
8

10

T
im

e
(m

s)

M
3

L
x

untar

M
3

L
x

shasum
M

3

L
x

sort

M
3

L
x

find

M
3

L
x

SQLite

M
3

L
x

LvlDB

App Xfers OS

M3 vs. Linux 4.10

Traced on Linux,
replayed on M3

M3FS vs. Linux tmpfs

Kernel App

Pager M3FS

M3: 1+3 cores

LinuxLinux: 1 core

18 / 19

Conclusion

M3 applies microkernel ideas to hardware
Add trusted communication component (TCU) next to each compute unit
TCU contains essence of a traditional microkernel
Microkernel-based system called M3 takes advantage of TCU

M3x introduced accelerator chaining
Improves performance compared to traditional approach
Reduces CPU load to almost zero→ accelerators run autonomously

19 / 19

Conclusion

M3 applies microkernel ideas to hardware
Add trusted communication component (TCU) next to each compute unit
TCU contains essence of a traditional microkernel
Microkernel-based system called M3 takes advantage of TCU

M3x introduced accelerator chaining
Improves performance compared to traditional approach
Reduces CPU load to almost zero→ accelerators run autonomously

19 / 19

