barkhauseninstitut.org -I barkhausen
institut

M3: Applying Microkernel-ldeas to Hardware

Nils Asmussen

ROSS, 15th November 2021

X |]
Barkhausen Institut h |

Research institute in Dresden, founded end of 2017

Currently about 40 people

Low-latency and secure loT systems

Focus on research and demonstrators

2/19

. |]
Barkhausen Institut h |

Research institute in Dresden, founded end of 2017

Currently about 40 people

Low-latency and secure loT systems

Focus on research and demonstrators

Wireless RF Design Privacy

Lab MPSoC oS

2/19

. |]
Barkhausen Institut h |

Research institute in Dresden, founded end of 2017

Currently about 40 people

Low-latency and secure loT systems

Focus on research and demonstrators

Wireless RF Design Privacy

Lab MPSoC oS

2/19

|]
Motivation h 1

® Microkernels in a nutshell
@ No isolation between components in monolithic OS
® Single exploitable bug anywhere — game over
® Microkernel-based systems split OS into isolated and unprivileged components
® 96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3/19

|]
Motivation h [

® Microkernels in a nutshell
@ No isolation between components in monolithic OS
® Single exploitable bug anywhere — game over
® Microkernel-based systems split OS into isolated and unprivileged components
® 96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]
® Microkernel-based systems have proven valuable for other objectives:

Low-noise execution, real time, flexibility, ...

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3/19

|]
Motivation h [

® Microkernels in a nutshell
@ No isolation between components in monolithic OS
® Single exploitable bug anywhere — game over
® Microkernel-based systems split OS into isolated and unprivileged components
® 96% of Linux CVEs would no longer be critical, 40% would be eliminated [1]
® Microkernel-based systems have proven valuable for other objectives:
Low-noise execution, real time, flexibility, ...
® Recently, new challenges are coming from the hardware side

® Heterogeneous systems
® Third-party components

® Security issues of complex general-purpose cores

[1] S. Biggs, et al.: The Jury Is In: Monolithic OS Design Is Flawed. 9th Asia-Pacific Workshop on Systems (APSys’18), 2018
3/19

Hardware Complexity: Heterogeneity h-l

® Demanded by performance and energy requirements
e Big challenge for OSes: single shared kernel on all cores does no longer work

® OSes need to be prepared for compute units with different feature sets

4/19

Hardware Complexity: Untrusted Hardware Components h-|

53]

SAMSUNG

Exynos Modem

Provided by third-party vendors

Bug in such a component can compromise whole system (see Broadcom incident)

Side channels in modern cores allow attackers to leak private data; some bypass

all security measures of the core (address spaces, virtualization, ...)

Have been lurking in CPUs for many years, also due to complexity

5/19

Microkernel-based System as Foundation

‘ Service ’ ‘ Service ’

T

6/19

Microkernel-based System as Foundation

1\
Service Service

T

6/19

Microkernel-based System as Foundation h-l

Service H Service

6/19

Microkernel-based System as Foundation h-l

Service H Service

6/19

Microkernel-based System as Foundation h-l

Service H Service

M3 System Architecture [1] h-l

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7/19

M3 System Architecture [1] h-l

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7/19

M3 System Architecture [1] h-l

Core GPU\/

)

—
e
(@

Key ideas:

/
€

® TCU as new hardware

I ‘

TCU TCU Cu component
Core Core é(}
TCU TCU TCU

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7/19

M3 System Architecture [1] h-l

Core GPU TPU Key ideas:

® TCU as new hardware

TCU TCU O——O TCU O—l component

Core Core FPGA

TCU (A TCU O——O TCU

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7/19

M3 System Architecture [1] h-

Kernel " App App

, Key ideas:
L4 = ° TCU hard
as new hardware
TCU QU O component

e Kernel on dedicated tile

Serv

App
ST O e O—O T |

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016

7/19

M3 System Architecture [1] h-l

Manage App App Key ideas:

® TCU as new hardware

Enforce EnforceO—QEnforceQ-l

component

e Kernel on dedicated tile

e Kernel manages,
Serv App Serv TCU enforces

Enforce(- Enforce ——Enforce

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
7/19

M3 System Architecture [1] h-l

Manage

Enforce

App App
p-kernel-ideas applied to HW:

EnforceQ—QEnforceQ-l ® s-kernel contains essence

of monolithic kernel

Serv

Enforce(-

® TCU contains essence of

App Serv u-kernel

Enforce ——Enforce

7/19

TCU-based Communication h-l

Kernel

TCU

TCU

TCU provides endpoints to:

® Access memory
(contiguous range, byte

granular)

8/19

TCU-based Communication

Kernel
TCU TCU
Serv App

DRAM

.
b
TCU provides endpoints to:

® Access memory
(contiguous range, byte

granular)

® Receive messages into a

receive buffer

® Send messages to a

receiving endpoint

8/19

.
TCU-based Communication h 1
TCU provides endpoints to:
Kernel ® Access memory
\\/ (contiguous range, byte
TCU

™ TCU (5) granular)

® Receive messages into a

receive buffer

Serv App DRAM ® Send messages to a

receiving endpoint

!

TCU TCU | ® Replies for RPC

8/19

M3: The Operating System h-l

® M3: Microkernel-based system for het. manycores

3
(or L4 +1) el IS
® |Implemented from scratch in Rust and C++ i
® Drivers, filesystems, etc. implemented on user tiles ;
- . - pipes O—O App
® Kernel manages permissions, using capabilities
® TCU enforces permissions i
(communication, memory access) o
o : App 5 T App
® Kernel is independent of other tiles

9/19

M3-based Projects h-|

® M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, Hermann Hartig, USENIX ATC 2019

® SemperOS: A Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, Hermann Hartig, USENIX ATC 2019

e Untrusted Cores in a Shared System
Under review for ASPLOS 2022

® Secure communication between devices (WIP)

® Compiler-based separation of components (WIP)

10/ 19

b

sh$ decode in.png | fft | mul | ifft > out.raw

11/19

b

Shell

sh$ decode in.png | fft | mul | ifft > out.raw

11/19

Shell

sh$ decode in.png | fft | mul | ifft > out.raw

int main(i
for(int i
auto re
transfe
}

Software

11/19

T

Shell

sh$ decode in.png | fft | mul | ifft > out.raw

int main(i
for(int i

auto re

transfe * * *
}

Software Hardware accelerators for

image processing

11/19

Shell

Pipes and output redirect

sh$ decode in.png | fft

int main(i
for(int i
auto re
transfe
}

Software

mul

ifft > out.raw

Hardware accelerators for

image processing

b

11/19

Shell

Pipes and output redirect

sh$ decode in.png | fft

int main(i
for(int i
auto re
transfe
}

Software

mul

ifft > out.raw

Hardware accelerators for

image processing

Challenges:

® OS must provide

b

11/19

OS Service Access for all Tiles

Shell Pipes and output redirect

sh$ decode in.png | fft | mul | ifft > out.raw

int main(i
for(int i

auto re

transfe * * *
}

Software Hardware accelerators for

image processing

Challenges:

® OS must provide

® Accelerators need

support for protocols

11/19

OS Service Access for all Tiles b-l

Shell Pipes and output redirect

sh$ decode in.png | Fft | mul FIfft > out.raw) ERaElEEs

® OS must provide
int main(i
for(int i
auto re
transfe * * *
,

® Accelerators need
Vol

support for protocols
Software Hardware accelerators for

image processing

11/19

. |
Generic Protocol h |

12/ 19

. |
Generic Protocol h |

File protocol:

® Data in memory

12/ 19

]
Generic Protocol h 1

File protocol:

® Data in memory

IFFT (cli) FS (srv) ® Msg channel between client and

req(in/out)

/_\ server

TCU TCU ® req(in) for next input piece

\/ e req(out) for next output piece

resp(pos,len)

mm [DRAM |

12/ 19

]
Generic Protocol h 1

File protocol:

® Data in memory

IFFT (cli) FS (srv) ® Msg channel between client and

req(in/out)

T server
@ ' TCU ® req(in) for next input piece
\4 \/ ® req(out) for next output piece

resp(pos,len)

_— DRAM |

® Server configures client’s memory EP

12/ 19

]
Generic Protocol h 1

File protocol:

® Data in memory

IFFT (cli) FS (srv) ® Msg channel between client and

req(in/out)

T server
@ ' TCU ® req(in) for next input piece
\4) \/ ® req(out) for next output piece

resp(pos,len)

_— DRAM |

Server configures client’s memory EP

Client accesses data via TCU

12/ 19

]
Generic Protocol h 1

File protocol:

® Data in memory

IFFT (cli) FS (srv) ® Msg channel between client and

req(in/out)

T server
@ ' TCU ® req(in) for next input piece
\4) \/ ® req(out) for next output piece

resp(pos,len)

. DRAM |

Server configures client’s memory EP

Client accesses data via TCU

Used by all tiles

12/19

Additions to Accelerator h |

Scratchpad memory (SPM)

AAA

Off-the-shelf accelerators

Accelerator

13/19

Additions to Accelerator h |

Scratchpad memory (SPM)

AAA

Off-the-shelf accelerators

Accelerator

TCU

13/19

. . -
Additions to Accelerator h |

Scratchpad memory (SPM)

AAA

Off-the-shelf accelerators

Accelerator Support Module (ASM):
Accelerator

T

ASM > TCU

@ [nteracts with TCU and accelerator

13/19

Additions to Accelerator

Scratchpad memory (SPM)

A

Accelerator

T

ASM — TCU

EMEM
o

IN OUT

b

Off-the-shelf accelerators

Accelerator Support Module (ASM):
@ [nteracts with TCU and accelerator

® Implements file protocol for input and

output channel

13/19

Assisted vs. Autonomous

Input

l

oS

Driver

l

Output

DMA

DMA

DMA

FFT

SPM *—

MUL

SPM *—

IFFT

SPM *—

14/19

Assisted vs. Autonomous

Input

1

oS

Driver

|

Output

DMA

DMA

DMA

FFT

SPM *—

MUL

SPM *—

IFFT

SPM *—

Input /

0OS

Output\

TCU

TCU

TCU

FFT
ASM

SPM *—

MUL
ASM

SPM *—

IFFT
ASM

SPM *—

14/19

Assisted vs. Autonomous

Input

I

oS

Output

DMA

DMA

DMA

Input /

0OS

Output\

TCU

3l
C
_

TCU

TCU

% 3
z |3

SPM

ASM

S

> | = (%)

SPM |

b

14/19

Assisted vs. Autonomous

Input

l

oS

Driver m—

l

— DMA

r DMA

Output

- DMA

FFT

SPM *—

MUL

SPM *—

IFFT

SPM *—

Input /

0OS

Output\

TCU

TCU

TCU

FFT
= ASM

SPM *—

MUL
= ASM

SPM *—

IFFT

= ASM
SPM *—

14/19

Accelerator Chains: Evaluation

FFT

MUL

IFFT

15/ 19

Accelerator Chains: Evaluation

FFT

MUL

IFFT

FFT

MUL

IFFT

1..4 chains

T

15/ 19

Accelerator Chains: Results h-l

] Assisted [Autonomous

20

151

%2}

E

5 10

E

= 5 -
0_

1 2 3 4
of parallel chains

16/ 19

Accelerator Chains: Results

[Assisted

20
154 1 []
= _
E
() 10]
£
- 5 -

0

1 2

3

4

of parallel chains

[0 Autonomous

b

16/ 19

Accelerator Chains: Results

[Assisted
20
154 1 []
= _
E
() 10]
£
- 5 -
0

1 2

3

4

of parallel chains

[0 Autonomous

CPU load

1.0
0.8
0.6 1
0.4 1
0.2 1

b

IR

0.0

1 2 3 4
of parallel chains

16/ 19

Accelerator Chains: Results (PCle-like Latency) h-l

] Assisted [Autonomous

80 1.0 -
—~~ 60 n 08]
" -
E 3 06-
o 407
£ g 0.4
l_
20 0.2
0- 0.0 -
1 2 3 4 1 2 3 4
of parallel chains # of parallel chains

17/19

Accelerator Chains: Results (PCle-like Latency) h-l

] Assisted [Autonomous

80 - — 1.0 —
/-\60_] 08_
n e
E 3 06-
g 40
£ é 0.4
l_
"lnlntin
0 0.0 — ==
1T 2 3 4 1T 2 3 4

of parallel chains # of parallel chains

17/19

Performance Comparison with Linux h 1

O App O Xfers O OS

10
’g 8 ® M3yvs. Linux 4.10
E 5
g 4 ® Traced on Linux,
= 2
0 replayed on M3
=3 23 3 3 33 33 23 3 ,
= ® MZFS vs. Linux tmpfs
tar untar shasum sort find SQlLite LvIDB

18/ 19

Performance Comparison with Linux

O App O Xfers O OS

10

=2 8

E s

g 4

= 2

0 o x o > o™ x o x o™ x
=4 =4 =4 = 4 = -
tar untar shasum sort find

Kernel | | App | <+——— M3: 143 cores

Pager | | M3Fs Linux: 1 core —

o x o™ x
= - =
SQLite LvIDB

Linux

T

® M3yvs. Linux 4.10

® Traced on Linux,
replayed on M3

® M3FS vs. Linux tmpfs

18/ 19

Performance Comparison with Linux h |

O App O Xfers O OS

0

?12 ® M3vs. Linux 4.10
€

g 2 ® Traced on Linux,
£

F 2 D D replayed on M3

X 2 3 X 2 3 2 43 e MPFSvs. Linux tmpfs

tar untar shasum sort find SQLite LvIDB

Kernel App | <=—— M3: 1+3 cores

Pager | | M3FS Linux: 1 core ™ | Linux

18/ 19

) .
Conclusion h I

® M3 applies microkernel ideas to hardware

® Add trusted communication component (TCU) next to each compute unit
® TCU contains essence of a traditional microkernel

® Microkernel-based system called M3 takes advantage of TCU

19/19

) .
Conclusion h I

® M3 applies microkernel ideas to hardware

® Add trusted communication component (TCU) next to each compute unit
® TCU contains essence of a traditional microkernel

® Microkernel-based system called M3 takes advantage of TCU
® M3x introduced accelerator chaining

® Improves performance compared to traditional approach

® Reduces CPU load to almost zero — accelerators run autonomously

19/ 19

