
Koç University, Istanbul, Turkey

A Dataflow-Graph Partitioning Method for
Training Large Deep Learning Models

Didem Unat

ROSS Workshop 13/11/2020

DL Needs Throughput-Oriented Architecture

● DL models are compute
intensive

● GPUs played major role in the
renaissance of DL
○ Order of magnitude faster

training
○ Many cores
○ High bandwidth memory

2

Memory Bottleneck
• Accelerators (GPUs) have a limited

device memory
– GPU V100 comes with 32 GBs
– Technology limitations and

price

3

Memory Bottleneck
• DNNs grow in size

– Higher accuracy on more
complex tasks (Transformers)

– Faster training
• Wide ResNet vs ResNet
• WRN-16-8 >> ResNet-101

4

• Accelerators (GPUs) have a limited
device memory
– GPU V100 comes with 32 GBs
– Technology limitations and

price

Memory Bottleneck

• Models barely fit into single GPU memory
– Use small batch sizes

• Resource underutilization
• Models do not fit into single GPU memory

5

• Accelerators (GPUs) have a limited
device memory
– GPU V100 comes with 32 GBs
– Technology limitations and

price

• DNNs grow in size
– Higher accuracy on more

complex tasks (Transformers)
– Faster training

• Wide ResNet vs ResNet
• WRN-16-8 >> ResNet-101

Related Work
● (1) Single device based solutions

○ Memory optimization techniques (Gradient Checkpointing)
○ Utilizing the host memory (Unified Memory)

● (2) Distributed training
○ Data parallelism

■ Doesn’t address the memory issue
○ Model parallelism (Gpipe, Pipedream, and others)

■ Model-specific, not general
■ Accuracy issues, requires manual tuning/implementations

○ Hybrid parallelism (Mesh-TensorFlow)
■ Specific, requires manual tuning

6

Our Approach: ParDNN

7

• Generic
– Zero dependency and requires no knowledge

about the DL aspects of the DNN models
• Automated, non-intrusive
– Requires no modification of the model or

operation kernels
• Works at system-level
– Operates on computational graph

Computational Graph
● Operations in the graph

represent one step
○ Both forward pass and back

propagation are in the graph

● The graph is static
○ Constructed before running and

stays the same
○ There are dynamic cases

● The graph is acyclic

8

Computational Graph

● G(V,E): Task graph
● V

○ n ∈ V: Task.
○ w(n): weight of n,

computation time
● E

○ e ∈ E: Dependency.
○ c(e): cost of e,

communication time
○ Defines the execution

order

9

Computational Graph

● G(V,E): Task graph
● V

○ n ∈ V: Task.
○ w(n): weight of n,

computation time
● E

○ e ∈ E: Dependency.
○ c(e): cost of e,

communication time
○ Defines the execution

order

10

How to partition this task graph among multiple GPUs?
● obey the memory constraints,
● reduce communication,
● minimize execution time

Real DNN Graphs
● Number of operations reaches hundreds of thousands,

may scale up to millions.
○ Another objective: Low complexity is necessary

11

Our Approach: ParDNN

12

ParDNN Algorithm Overview
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

● Step 1: Given K devices, partition the graph
into K partitions so that execution time is
minimized
○ Communication time is minimized
○ Computation loads are balanced

13

ParDNN Algorithm Overview
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

● Step 1: Given K devices, partition the graph
into K partitions so that execution time is
minimized
○ Communication time is minimized
○ Computation loads are balanced

● Step 2: Meet the memory consumption
constraints
○ If each partition meets the device memory

constraints
■ Done.

○ Else
■ Handle the memory overflow while

maintaining locality-parallelism trade-off.

14

ParDNN Algorithm
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Stage1

Stage2

Stage3

● To achieve both
○ Good quality partitions
○ Reasonable runtime

● Step 1 is divided into 3 stages

16

ParDNN Algorithm
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Stage2

Stage3

● To achieve both
○ Good quality partitions
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing

■ Gets smaller instance representation
■ Obtaining coarser view
■ Capturing costly communications

Slicing

17

Graph Slicing
● Obtain K critical paths of the graph

○ Get the critical path
■ primary cluster

○ Remove its nodes & incident edges
● Until the graph has no more nodes

○ Find the heaviest cluster
■ secondary cluster

○ Remove its nodes & incident edges

In the figure, pink and green paths are primary clusters
Yellow, blue and purple nodes are secondary clusters

18

ParDNN Algorithm Overview
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Slicing

Mapping

Stage3

● To achieve both
○ Good quality partitions
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing
○ Stage 2: Mapping, merge

secondary clusters with primaries
in a way that:
■ Balances computational loads
■ Minimizes communication

19

Mapping

Initial
merging

Load
Balancing

VS

State-of-the-art
load balancing

algorithm by
others

21

ParDNN Algorithm Overview
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Slicing

Mapping

Refinement

● To achieve both
○ Good quality partitions
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing
○ Stage 2: Mapping
○ Stage 3: Refinement

■ Enhance partitioning quality
● At the cluster level
● At the node level

■ Swap paths and nodes between
primaries

22

Step 2: Meeting Memory Constraints
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

Slicing

Mapping

Scheduler
Emulator

Stage 3

Refinement

● Step 2: Meet the memory
consumption constraints
○ Stage 1: Emulate Tensorflow

scheduler
■ Get the node’s expected

scheduling times
■ Memory allocation and

deallocation patternsStage 2

24

● Assume a schedule:
○ A, C, D, E, F, B, G.

● Peak memory reserved:
○ 1 + 6 + 1

■ = 8

Memory consumption

26

● Assume another schedule:
○ A, B, C, D, E, F, G.

● Peak memory reserved:
○ 6 + 1 + 1 + 2 + 1 = 11

● It affects as well when having
multiple workers.
○ When the data is sent from one to

another.

Memory consumption

27

Step2 Stages
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

Slicing

Mapping

Scheduler
Simulation

Stage 3

Refinement

● Stage 1: Emulate Tensorflow
scheduler

● Stage 2: Modeling memory
consumption
○ Derive the memory consumption

on a certain device at a certain
point in time

○ Calculate memory potentialsModeling
memory

consumption

28

Step2 Stages
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

Slicing

Mapping

Scheduler
Simulation

Addressing
Overflow

Refinement

Modeling
memory

consumption

● Stage 1: Emulate Tensorflow
scheduler

● Stage 2: Modeling memory
consumption

● Stage 3: Address the memory
overflow
○ Which nodes to move?
○ Where to move?

29

Addressing Memory Overflow
● Each overflow point can be 0-1 min knapsack

○ Move a set of nodes from the overloaded part
■ Summation of their memory potentials at the overflow time ≥

Overflow
○ The cost of a move is how much it affects the existing

partitioning:
■ Incur the least possible perturbation on Step 1 results

○ Solved greedily
○ Move the node which , per a memory unit, has the least

computation cost and incurs the least communication
when moved.

30

Results

31

Models and Datasets
• We have experimented with 5 models with 2 different

configurations (large and very large)

32

Results (Batch size scaling)

ParDNN enables working with larger data, e.g. pushing larger batches, using
certain number of workers.

33

Results (Training Speedup)

34

Experimenting with 2, 4, 8, and 16 GPUs. The number in the brackets is
the batch size.

Results (Training Speedup)

35

Better resource utilization → Superlinear speedup up to 4 GPUs in all cases.

Results(Larger models scaling)

36

Good scaling with the large models up to 16-GPUs.

Comparison with Gradient Checkpointing + Data parallelism

37

Experimenting with 2, 4, and 8 GPUs. The number in the brackets is the batch size.

Comparison with Gradient Checkpointing + Data parallelism

38

● ParDNN is better in more than half of the cases.
● Checkpointing fails to fit the model 40% of the time.

Comparison with Mesh-Tensorflow

39

Comparison with Mesh-Tensorflow

40

● ParDNN automates the partitioning process and needs no programmer
intervention and still manages to have similar performance to experts

partitioning with Mesh-Tensorflow.

Complexity & Overhead
● The running time of our algorithm in all the experiments

ranges from 18 to 117 sec
● The time complexity of each step as follows:

41

Summary
• We addressed memory constrained DNN models on multiple

GPU devices
– Elegant, non-intrusive and model agnostic approach
– Two step algorithm design provides efficiency and low overhead
– Compared to similar approaches, our results are better or provides

qualitative advantages
– Paper is on arxiv: https://arxiv.org/abs/2008.08636

This project is funded by Tübitak 118E801.
42

https://arxiv.org/abs/2008.08636

