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DL Needs Throughput-Oriented Architecture

● DL models are compute 
intensive

● GPUs played major role in the 
renaissance of DL
○ Order of magnitude faster 

training
○ Many cores
○ High bandwidth memory
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Memory Bottleneck
• Accelerators (GPUs) have a limited 

device memory 
– GPU V100 comes with 32 GBs
– Technology limitations and 

price
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Memory Bottleneck
• DNNs grow in size

– Higher accuracy on more 
complex tasks (Transformers)

– Faster training 
• Wide ResNet vs ResNet
• WRN-16-8 >> ResNet-101
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Memory Bottleneck

• Models barely fit into single GPU memory 
– Use small batch sizes

• Resource underutilization
• Models do not fit into single GPU memory
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• Accelerators (GPUs) have a limited 
device memory 
– GPU V100 comes with 32 GBs
– Technology limitations and 

price

• DNNs grow in size
– Higher accuracy on more 

complex tasks (Transformers)
– Faster training 

• Wide ResNet vs ResNet
• WRN-16-8 >> ResNet-101



Related Work
● (1) Single device based solutions 

○ Memory optimization techniques (Gradient Checkpointing)
○ Utilizing the host memory (Unified Memory)

● (2) Distributed training
○ Data parallelism

■ Doesn’t address the memory issue
○ Model parallelism (Gpipe, Pipedream, and others)

■ Model-specific, not general
■ Accuracy issues, requires manual tuning/implementations 

○ Hybrid parallelism (Mesh-TensorFlow)
■ Specific, requires manual tuning
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Our Approach: ParDNN
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• Generic
– Zero dependency and requires no knowledge 

about the DL aspects of the DNN models
• Automated, non-intrusive 
– Requires no modification of the model or 

operation kernels
• Works at system-level
– Operates on computational graph



Computational Graph
● Operations in the graph 

represent one step
○ Both forward pass and back 

propagation are in the graph

● The graph is static 
○ Constructed before running and 

stays the same
○ There are dynamic cases 

● The graph is acyclic
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Computational Graph

● G(V,E): Task graph
● V

○ n ∈ V: Task.
○ w(n): weight of n, 

computation time
● E

○ e  ∈ E: Dependency.
○ c(e): cost of e, 

communication time
○ Defines the execution 

order
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How to partition this task graph among multiple GPUs?
● obey the memory constraints, 
● reduce communication, 
● minimize execution time



Real DNN Graphs
● Number of operations reaches hundreds of thousands, 

may scale up to millions.
○ Another objective: Low complexity is necessary
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Our Approach: ParDNN
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ParDNN Algorithm Overview 
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Step 2

● Step 1: Given K devices, partition the graph 
into K partitions so that execution time is 
minimized
○ Communication time is minimized
○ Computation loads are balanced
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ParDNN Algorithm Overview 
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Step 2

● Step 1: Given K devices, partition the graph 
into K partitions so that execution time is 
minimized
○ Communication time is minimized
○ Computation loads are balanced

● Step 2: Meet the memory consumption 
constraints 
○ If each partition meets the device memory 

constraints 
■ Done.

○ Else
■ Handle the memory overflow while 

maintaining locality-parallelism trade-off.
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ParDNN Algorithm 
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Stage1

Stage2

Stage3

● To achieve both
○ Good quality partitions 
○ Reasonable runtime

● Step 1 is divided into 3 stages
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ParDNN Algorithm 
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Stage2

Stage3

● To achieve both
○ Good quality partitions 
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing 

■ Gets smaller instance representation
■ Obtaining coarser view
■ Capturing costly communications

Slicing
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Graph Slicing
● Obtain K critical paths of the graph

○ Get the critical path 
■ primary cluster

○ Remove its nodes & incident edges
● Until the graph has no more nodes

○ Find the heaviest cluster
■ secondary cluster

○ Remove its nodes & incident edges

In the figure, pink and green paths are primary clusters 
Yellow, blue and purple nodes are secondary clusters
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ParDNN Algorithm Overview 
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Slicing

Mapping

Stage3

● To achieve both
○ Good quality partitions 
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing
○ Stage 2: Mapping, merge 

secondary clusters with primaries 
in a way that:
■ Balances computational loads
■ Minimizes communication
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Mapping

Initial 
merging

Load 
Balancing

VS

State-of-the-art 
load balancing

algorithm by 
others
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ParDNN Algorithm Overview 
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Slicing

Mapping

Refinement

● To achieve both
○ Good quality partitions 
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing
○ Stage 2: Mapping 
○ Stage 3: Refinement

■ Enhance partitioning quality
● At the cluster level
● At the node level

■ Swap paths and nodes between 
primaries
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Step 2: Meeting Memory Constraints
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Slicing

Mapping

Scheduler 
Emulator 

Stage 3

Refinement

● Step 2: Meet the memory 
consumption constraints 
○ Stage 1: Emulate Tensorflow 

scheduler
■ Get the node’s expected 

scheduling times
■ Memory allocation and 

deallocation patternsStage 2
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● Assume a schedule:
○ A, C, D, E, F, B, G.

● Peak memory reserved:
○ 1 + 6 + 1

■ = 8

Memory consumption
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● Assume another schedule:
○ A, B, C, D, E, F, G.

● Peak memory reserved:
○ 6 + 1 + 1 + 2 + 1 = 11  

● It affects as well when having 
multiple workers.
○ When the data is sent from one to 

another.

Memory consumption

27



Step2 Stages
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Step 2

Slicing

Mapping

Scheduler 
Simulation

Stage 3

Refinement

● Stage 1: Emulate Tensorflow 
scheduler

● Stage 2: Modeling memory 
consumption
○ Derive the memory consumption 

on a certain device at a certain 
point in time

○ Calculate memory potentialsModeling 
memory 

consumption
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Step2 Stages
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Step 2

Slicing

Mapping

Scheduler 
Simulation

Addressing 
Overflow

Refinement

Modeling 
memory 

consumption

● Stage 1: Emulate Tensorflow 
scheduler

● Stage 2: Modeling memory 
consumption

● Stage 3: Address the memory 
overflow
○ Which nodes to move?
○ Where to move?
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Addressing Memory Overflow
● Each overflow point can be 0-1 min knapsack

○ Move a set of nodes from the overloaded part
■ Summation of their memory potentials at the overflow time ≥ 

Overflow
○ The cost of a move is how much it affects the existing 

partitioning:
■ Incur the least possible perturbation on Step 1 results

○ Solved greedily
○ Move the node which , per a memory unit, has the least 

computation cost and incurs the least communication 
when moved.
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Results
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Models and Datasets 
• We have experimented with 5 models with 2 different 

configurations (large and very large)
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Results (Batch size scaling)

ParDNN enables working with larger data, e.g. pushing larger batches, using 
certain number of workers.
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Results (Training Speedup)
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Experimenting with 2, 4, 8, and 16 GPUs. The number in the brackets is 
the batch size.



Results (Training Speedup)
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Better resource utilization → Superlinear speedup up to 4 GPUs in all cases.



Results(Larger models scaling)
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Good scaling with the large models up to 16-GPUs.



Comparison with Gradient Checkpointing + Data parallelism
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Experimenting with 2, 4, and 8 GPUs. The number in the brackets is the batch size.



Comparison with Gradient Checkpointing + Data parallelism

38

● ParDNN is better in more than half of the cases.
● Checkpointing fails to fit the model 40% of the time.



Comparison with Mesh-Tensorflow
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Comparison with Mesh-Tensorflow
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● ParDNN automates the partitioning process and needs no programmer 
intervention and still manages to have similar performance to experts 

partitioning with Mesh-Tensorflow.



Complexity & Overhead
● The running time of our algorithm in all the experiments 

ranges from 18 to 117 sec
● The time complexity of each step as follows:
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Summary
• We addressed memory constrained DNN models on multiple 

GPU devices 
– Elegant, non-intrusive and model agnostic approach  
– Two step algorithm design provides efficiency and low overhead
– Compared to similar approaches, our results are better or provides 

qualitative advantages 
– Paper is on arxiv: https://arxiv.org/abs/2008.08636

This project is funded by Tübitak 118E801.
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