
Locality Aware
Scheduling For

Scalable
Heterogeneous

Environments

Alok Kamatar, Ryan Friese, Roberto Gioiosa

ROSS 2020

2

Outline

• Motivation

• The Minos Computing Library

• Architecture Details

▪ Resident Memory

▪ Scheduling Algorithm

• Experimental Results

▪ SHOC Benchmarks

▪ Hyper-parameter evaluation

• Conclusions and Future Work

3

Exploiting Scalable, Heterogeneous Systems

• Increasing levels of hardware
specialization

▪ i.e. GPUs, Deep Learning Accelerators,
DSPs, etc.

• Higher complexity to program new
applications

• Potential pitfalls when scaling to other
architectures

4

Motivation

• Data movement is now the critical
aspect of performance

CPU DEV2DEV1

Mem MemMem

Bus

Multiple Memory Nodes

Source: Kogge, Shalf 2013

5

The Minos Computing Library (MCL) [1]

• Framework for programming heterogeneous
systems

• Features

▪ Dynamic task scheduling onto available
resources

▪ Co-schedule independent applications

▪ Internal profiling and tracing capabilities

• Flexibility

▪ Automatic scaling to available resources

▪ Works/can be integrated with commonly used
technologies

▪ Independent scheduler framework

MCL

OpenMP TFlow TACO[2]

A1 A2 A3 A4

P1 P2 P3 P5P4 P6

[1] R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati. 2020. The Minos Computing Library: Efficient Parallel

Programming for Extremely Heterogeneous Systems. In General Purpose Processing Using GPU (GPGPU ’20), February 23,

2020, San Diego, CA, USA

[2] G. Kestor, R. Gioiosa, M. Raugas. Towards Performance Portability through an Integrated Programming Eco-System for

Tensor Algebra. In Performance, Portability, and Productivity in HPC Forum, to be held online, September 2020

6

MCL Program Example

• Same piece of code will
exploit all available
resources

• OpenCL kernels are
directly usable by MCL

7

MCL Resident Memory Module

• Allows persistent data to remain in
device memory across tasks

• Coordinates data movement so
correct data is transferred to the
correct device

• Supports read-only (i.e. multiple
copies) and read-write data
(exclusive copies)

MCL_ARG_RESIDENT

MCL_ARG_INVALID

MCL_ARG_DONE

8

MCL Trace with Resident Memory

Application

Scheduler

Worker

Create
task

Set
Args

Set
Kernel

Submit
Task

Do More
Stuff

Test
task

Create and
Submit Task

Find
Available

Device

Find
Resident
Memory

Find
Available

Device

Execute
Task

Move Data
to GPU

GPU to GPU
Transfer (?)

Execute
Task

Memory + PE

usage
Device Task Finished Memory + PE

usage
Device

MCL_ARG_RESIDENT MCL_ARG_RESIDENT

9

MCL Schedulers: Round-Robin Scheduler

• Schedules tasks in a first-in first out manner to the next available device

• Typically achieves high resource utilization

• Problems

▪ Suffers from head-of-line blocking

▪ Makes poor scheduling decisions when there is data reuse between kernels

▪ Unnecessary data transfers

10

MCL Schedulers: Delay Scheduler

• Delays kernels from running on
devices without device local data
to minimize data transfers

• Skips devices that do not have
device local data

• Skips tasks when waiting for busy
devices

• Limits the number of times a task
can be delayed to prevent a task
from blocking too long

11

Delay Scheduler Illustration

MCL TaskMCL TaskMCL TaskMCL Task

Ready Tasks

head of queue

Task Memory

Buffer Device Uses

1 1 7

2 2,3 1

MCL Task
Task Mem < Dev

Available Mem &&

task threads < Dev

available threads

Local Data(t, dev)

== Maximum Local

Data

Scheduled Task

on Device

Attempts > Max

Attempts ?

Increment Task

Attempts

Devs Tried

< Num

Devs

Skip Task

Go to next device

Yes

Yes

Yes

Yes Potential for Hot-Spot

Creation

12

MCL Schedulers: Mixed Scheduler

• Attempts to balance system
utilization with data locality
concerns

• Detects popular pieces of data to
create replicas

• The best predictor of how popular
data will be is how popular it was
in the past

13

Experimental Setup

• Benchmarks (from SHOC)

▪ BFS*

▪ Sort*

▪ FFT*

▪ DGEMM

▪ SPMV

▪ MD5Hash

DGX-1 P100

• 2x 20 Core Intel Xeon CPU

• 8x Nvidia P100 GPU, NVLINK

• 256 GB RAM + 16 GPU

* = Exploits Data Locality

14

Scheduling Evaluation

Hot-Spot

Creation

Benefit

of

Locality

Low

Additional

Overhead

15

BFS Memory Usage Comparison

Delay Scheduler Memory Trace Mixed Scheduler Memory Trace

Hot Spot creation on device 1
Adaptive replication

of popular data

GPU 1 Memory use from MCL internal

trace capabilities

16

Effect of Hyperparameters on Performance

BFS

Benchmark

- 1,000,000

vertices

- 4096 Tasks

If Max Attempts > Num

Devices – copy factor

dominates performance

When Max Attempts <

Num Devices – low

performance

0

50

100

150

200

250

300

2 4 8 16 32

B
F

S
 M

T
E

P
S

Max Attempts

Copy Factor 2 Copy Factor 4 Copy Factor 8 Copy Factor 16

Num

GPUs

17

Effect of Hyperparameters on GBs Transferred

BFS

Benchmark

- 1,000,000

vertices

- 4096 Tasks

If Max Attempts > Num

Devices – copy factor

dominates performance

When Max Attempts <

Num Devices – low

performance

0

20

40

60

80

100

120

2 4 8 16 32

B
F

S
 G

B
s
 T

ra
n

s
fe

rr
e

d

Max Attempts

Copy Factor 2 Copy Factor 4 Copy Factor 8 Copy Factor 16

Num

GPUs

18

Conclusions + Future Work

• One of the primary challenges of using multiple devices is managing memory
and coordinating data movements

• We introduce MCL Resident Memory to seamlessly manage device memory
and coordinate data transfers

• Results demonstrate the importance of locality in achieving performance
speedups

• Improves performance against other baselines

• Improve scheduler by dynamically determining hyperparameters

• In the future we want to expand this work to allow scheduling and data sharing
among multiple applications

Thank you

19

Alok Kamatar

Alok.Kamatar@pnnl.gov

Roberto Gioiosa

Roberto.Gioiosa@pnnl.gov

mailto:Alok.kamatar@pnnl.gov
mailto:Roberto.Gioiosa@pnnl.gov

Additional
Slides

21

Results With S3D S3D is a standard direct numerical solver

(DNS) used for combustion and other chemical

simulations. The benchmark runs the Get-

Rates application from the S3D suite

22

Application Composition

All Large

Tasks

All Small

Tasks

Experiment Details:

- OpenCL application

partitioned among 8 devices

- A variable mix of small

(64x64) and large

(1024x1024) GEMMS

23

Eviction/Checkpointing

• Memory Usage is a limited resource that is under demand in a HPC system

• MCL supports flexible eviction policies that can be combined with scheduler
policies

• When applications are unable to be run because no device has enough
available memory, resident data can be evicted back to main memory

• To the user, MCL still behaves the same

• Currently supports a LRU policy

24

Comparison Against StarPU

StarPU Scheduling LWS:

• Task is automatically

scheduled on worker that

released it

• Idle workers use data

transfer performance

estimates to determine

weather to move data and

“steal” work

Best effort implementation of

StarPU – still investigating

performance discrepancy

