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Exploiting Scalable, Heterogeneous Systems

• Increasing levels of hardware 
specialization 

▪ i.e. GPUs, Deep Learning Accelerators, 
DSPs, etc.

• Higher complexity to program new 
applications

• Potential pitfalls when scaling to other 
architectures
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Motivation

• Data movement is now the critical 
aspect of performance
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Multiple Memory Nodes

Source: Kogge, Shalf 2013
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The Minos Computing Library (MCL) [1]

• Framework for programming heterogeneous 
systems

• Features

▪ Dynamic task scheduling onto available 
resources

▪ Co-schedule independent applications

▪ Internal profiling and tracing capabilities

• Flexibility

▪ Automatic scaling to available resources

▪ Works/can be integrated with commonly used  
technologies

▪ Independent scheduler framework

MCL

OpenMP TFlow TACO[2]
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[1] R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati. 2020. The Minos Computing Library: Efficient Parallel 

Programming for Extremely Heterogeneous Systems. In General Purpose Processing Using GPU (GPGPU ’20), February 23, 

2020, San Diego, CA, USA

[2] G. Kestor, R. Gioiosa, M. Raugas. Towards Performance Portability through an Integrated Programming Eco-System for 

Tensor Algebra. In Performance, Portability, and Productivity in HPC Forum, to be held online, September 2020
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MCL Program Example

• Same piece of code will 
exploit all available 
resources

• OpenCL kernels are 
directly usable by MCL
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MCL Resident Memory Module

• Allows persistent data to remain in 
device memory across tasks

• Coordinates data movement so 
correct data is transferred to the 
correct device

• Supports read-only (i.e. multiple 
copies) and read-write data 
(exclusive copies)

MCL_ARG_RESIDENT

MCL_ARG_INVALID

MCL_ARG_DONE
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MCL Trace with Resident Memory 
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MCL Schedulers: Round-Robin Scheduler

• Schedules tasks in a first-in first out manner to the next available device

• Typically achieves high resource utilization

• Problems

▪ Suffers from head-of-line blocking

▪ Makes poor scheduling decisions when there is data reuse between kernels

▪ Unnecessary data transfers
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MCL Schedulers: Delay Scheduler

• Delays kernels from running on 
devices without device local data 
to minimize data transfers

• Skips devices that do not have 
device local data

• Skips tasks when waiting for busy 
devices

• Limits the number of times a task 
can be delayed to prevent a task 
from blocking too long
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Delay Scheduler Illustration
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MCL Schedulers: Mixed Scheduler

• Attempts to balance system 
utilization with data locality 
concerns

• Detects popular pieces of data to 
create replicas

• The best predictor of how popular 
data will be is how popular it was 
in the past
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Experimental Setup

• Benchmarks (from SHOC)

▪ BFS*

▪ Sort*

▪ FFT*

▪ DGEMM

▪ SPMV

▪ MD5Hash

DGX-1 P100

• 2x 20 Core Intel Xeon CPU

• 8x Nvidia P100 GPU, NVLINK

• 256 GB RAM + 16 GPU

* = Exploits Data Locality
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Scheduling Evaluation
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BFS Memory Usage Comparison

Delay Scheduler Memory Trace Mixed Scheduler Memory Trace

Hot Spot creation on device 1
Adaptive replication 

of popular data

GPU 1 Memory use from MCL internal 

trace capabilities
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Effect of Hyperparameters on Performance
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Effect of Hyperparameters on GBs Transferred
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Conclusions + Future Work

• One of the primary challenges of using multiple devices is managing memory 
and coordinating data movements

• We introduce MCL Resident Memory to seamlessly manage device memory 
and coordinate data transfers

• Results demonstrate the importance of locality in achieving performance 
speedups

• Improves performance against other baselines

• Improve scheduler by dynamically determining hyperparameters

• In the future we want to expand this work to allow scheduling and data sharing 
among multiple applications
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Results With S3D S3D is a standard direct numerical solver 

(DNS) used for combustion and other chemical 

simulations. The benchmark runs the Get-

Rates application from the S3D suite



22

Application Composition

All Large 

Tasks

All Small 

Tasks

Experiment Details:

- OpenCL application 

partitioned among 8 devices

- A variable mix of small 

(64x64) and large 

(1024x1024) GEMMS
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Eviction/Checkpointing

• Memory Usage is a limited resource that is under demand in a HPC system

• MCL supports flexible eviction policies that can be combined with scheduler 
policies

• When applications are unable to be run because no device has enough 
available memory, resident data can be evicted back to main memory

• To the user, MCL still behaves the same

• Currently supports a LRU policy
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Comparison Against StarPU

StarPU Scheduling LWS:

• Task is automatically 

scheduled on worker that 

released it

• Idle workers use data 

transfer performance 

estimates to determine 

weather to move data and 

“steal” work

Best effort implementation of 

StarPU – still investigating 

performance discrepancy


