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Presentation Outline
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Accelerating Scientific Workloads

Climate science [1] Cosmology [2]

e N = Complex, general-purpose system

= Many diverse co-located workloads

= Shared hardware, memory & I/O
bandwidth

= Debugging performance bottlenecks is
hard!

Frequency of jobs w.r.t. I/O throughput and volume

» |/O problems can cause 10-100x —— 10*
A 6 orders of
degradation in performance . kit i
_ _ st e/l Magnitude . g agess 10° 2
= Some jobs are very susceptible to I/O £ b = 2
contention g 41 ‘ | ng
= Debugging I/O performance issues is hard: S ¢ s;’ ; _1012
the problem can hide in any of the layers! S i
- - - : : — 10°
KiB MiB GiB TiB PiB
I/O Volume
A M EhEGﬁﬁlE“E(I:{I\k(? COMPUTER Argon ne o [1] Image by Mat Maltrud / Los Alamos National Laboratory
I® TEXAS A&M UNIVERSITY NATIONAL LABORATORY  [2] John Spizzirri, Cartography of the cosmos




LABORATORY
Modelling an HPC System Using ML

Many reasons why we want ML

models of HPC systems:

« Can use them to predict runtime or
|/O throughput of future jobs

« Can use them as an “early warning
system” for wasteful jobs

» Can help better schedule jobs that
are e.g., sensitive to 1/0 contention
or that negatively impact other jobs

« Can interpret the model to better
understand the HPC system

HPC

applications ML model of

/0O throughput Job 1/0 |:> /0 throughput
motifs prediction
.ATM ELECTRICAL & COMPUTER Argon ne o
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Real-World Usage of I/O Throughput Models

« Our models are trained on data from 2017 to 2020 Ox
» Dataset split 80/20 into training and test sets g B
* We evaluate our models on new real-world data T
» Collected after training has ended 1x

ul
* Blue line represents model errors on data test Ox
data S
« Orange line represents errors on newly L] oX
collected data 1%

 Bluelineis supposed to be representative of Ox
real-world performance — what went wrong? b
« Possible that the system or applications changed = 5%

. : L
" Ropented eperimert atdferentcuofs =y, Al
2018-01 2019-01 2020-01

For more information about modelling HPC systems,

EklE(-'i(il.l\;ElEcI:!‘I\hll-é( COMPUTER Argon ne ’ check out our SC20 paper “HPC 1/0O Throughput

TEXAS A&M UNIVERSITY NATIONAL LABORATORY Bottleneck Analysis with Explainable Local Models”
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Diagnosing Lack of Generalization

» “Generalization refers to your model's ability to adapt properly to
new, previously unseen data, drawn from the same distribution as

the one used to create the model.” [1]
= Good accuracy on training sets but

bad accuracy on real tasks hints at
lack of generalization

= \We do test on unseen data
» Our test set is built specifically for this purpose
 But it doesn’t seem to work!

[1] https://developers.google.com/machine-learning/crash-

ELECTRICAL & COMPUTER
ENGINEERING Argon ne o course/generalization/video-lecture

TEXAS A& M UNIVERSITY NATIONAL LABORATORY [2] https://en.wikipedia.org/wiki/Overfitting
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Training-Test Set Distances

= Hypothesis: our test set doesn’t work o’ .l 2
because it is too similar to the training set / o o8 & O Testiod
= We measure the nearest neighbor distance ° ® b ® Training job
between pairs of jobs where one job is in the J
training set, and the other is in the test set s,
» Figure on the right shows a 2D histogram of training- x g ‘,“ &
test nearest neighbor distances & I/0O throughput diff.
= Some conclusions: coax |2
* Very similar nearest neighbors in the training set g
 Plenty of jobs have identical neighbors (distance = 0) H 1 i
« Nearest neighbor predictions are surprisingly good? 2 ‘
1 x ? Y " . F
A | Besmashe oo Aroonne & S U (e
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LLABORATORY
Robust Test Sets

= How can we build test sets that enforce Climate application
greater separation from the training set?

* |dea: hold-out all jobs of a single
application to test generalization

* On the right we see the training-test
nearest neighbor distribution for a held
out climate application

= Problems with holding out apps:

« Some apps are a lot harder to predict than
others

« Can’t try each one — we have 600+ apps

0.01 0.1 1 10
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DBSCAN-based Test Sets

= DBSCAN is an agglomerative clustering
method that iteratively groups together points
or clusters closer than some e distance

= Benefits:

« We can guarantee minimum distance of € between
the training and test sets

= \We can use DBSCAN to cluster the dataset,
and hold-out some set of clusters at random

= Problems: Dense cluster Sparse cluster
« Some clusters are a lot harder to predict than
others
= We solve this by adapting K-fold o
crossvalidation: J G
« We split clusters into n groups of about the same o ©
size
« Each group of clusters acts as a test set once

 We have to train and evaluate n models . .
Which cluster ends up in the test set

ELECTRICAL & COMPUTER strongly affects ML model test accuracy!
ENGINEERING Argon ne o gy y

TEXAS A&&M UNIVERSITY

T

NATIONAL LABORATORY



A SCS ADAPTIVE & SECURE
COMPUTING SYSTEMS

LABORATORY

Al |

DBSCAN-based Test Sets

DBSCAN is an agglomerative clustering
method that iteratively groups together points
or clusters closer than some e distance

Benefits:

« We can guarantee minimum distance of € between
the training and test sets

We can use DBSCAN to cluster the dataset,
and hold-out some set of clusters at random
Problems:

« Some clusters are a lot harder to predict than
others

We solve this by adapting K-fold
crossvalidation:
« We split clusters into n groups of about the same
size
« Each group of clusters acts as a test set once
* We have to train and evaluate n models
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Optimizing Models for Exploitation vs. Generalization

Al |

We sitill have to select the € value! Epsilon value

For € — 0, the DBSCAN-based test T S
set approximates the random one

2.5% o
» Good for testing how model will perform € ; o« /,/-/
on previously seen data 5% e e oo e—a—e—e—""|
For Iarge €, the DBSCAN_based L e=0 00;0625 8=0%05 8:0¥04 e=§32 e=1.28
test set is similar to app-based ones s ' | | | '
» Good for testing how model will perform § 1(1)888
on completely new applications E 1(1)8
5
z

There is no perfect value — it is up ,
0,~1,-,2, 3 ,,0..1..2..3_ .0 1. .2 .3 _ 0 1. .2 .3

to the user to select what the 10°10'10%10° 10°10'10%10° 10°10'10°10° 10°10'10%10° 10°10'10°10
mOd eI’S goal iS Cluster size Cluster size Cluster size Cluster size Cluster size
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Test Set Comparison

Randomly Selected Test Set App-based Test Set DBSCAN-based Test Set

|.|.|.I.|.|.|.I.|.._
® o L 4
8 X Qo
5 4x |* g
=
84

2 X i

1% % o AW :F
10 10* 10° 0.01 0.1 1 10 0.01 0.1 1 10
Distance Distance Distance
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Evaluating ML Models on Each Test Set

= We train and test an ML model
using each of the proposed test
set generation methods:

« Randomly split training / test set

« Climate science / cosmology
applications held out as test sets

« DBSCAN-based test sets for
e=2ande=0.5
= We present both training and test
error distributions

« All training sets have similar error
distributions

» Test sets have very different
distributions

ERSRERNG COMPUTER - Argonne @
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Random
Mean training error: 1.41
Mean test error: 1.58

Climate
Mean training error: 1.39
Mean test error: 2.05

Cosmology
Mean training error: 1.42
Mean test error: 3.78

DBSCAN g=2
Mean training error: 1.46
Mean test error: 2.30

DBSCAN ¢=0.5
Mean training error: 1.44
Mean test error: 6.06

[ ] Train
— Test

1.0x 1.5% 2.0x 2.5% 3.0x
Error
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Limits of I/O Throughput Prediction

= Comparing our models to those of Exact Duplicate o Duphcate T

previous works Is hard: H g e M § Ly | B N ﬁ
+ Different datasets, collected at different points _ | s : nw -
on 1 e T | R RN 6 i

= E.g., some works have access to I/O contention
logs, we don't Bjorn Barz, Joachim Denzler, Do We Train on Test Data?

Test

Training

« Lack of open datasets & reproducible code Purging CIFAR of Near-Duplicates, Journal of Imaging, 2020
 Different goals, different metrics _ o
= |nstead of comparing our 1/O throughput * Ifthere is noise in the labels (/O

throughput measurements in our
case) there is a fundamental upper
bound to accuracy we can achieve
when predicting 1/0 throughput

« We simply can’t predict noise

prediction models to some baseline, can
we establish the best case scenario?

« What is the upper bound on accuracy,
given access to this data?

KM | ERSRESAE coMmem= Argonne &

TEXAS A&M UNIVERSITY NATIONAL LABORATORY



LABORATORY

Using Duplicate Jobs to Probe I/O Contention

= Duplicate jobs are jobs with identical input features:
« Same number of bytes, files, accesses, same I/O access patterns, etc. Training — test set distances for

« Typically runs of the same application, on data of the same size & a randomly selected test set
format

= Duplicate jobs differ on system-sensitive features: /—l
* Runtime, I/O throughput, file open & close timestamps

anatllile,,

= We've already seen duplicate jobs! I -‘\ s ¥
= Duplicate jobs look identical to our ML models: 8x" | o

1L

(|1

.

|1

| I

.1

« The only thing that changes is the target output (I/O throughput)
» Since duplicates are identical, we can’t predict better than average
= ML models can typically achieve 100% accuracy on the
training set

« That is assuming that there are no inconsistent samples (e.g., 2%
identical jobs with different I/O throughputs)

= We use duplicate jobs to estimate the best possible {3,
(training set) accuracy achievable 1x & Y w
AHM

Error

$
0  10°10" 10°
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Using Duplicate Jobs to Probe I/O Contention

thFaSt?]r Jotb; Ihave bothdhl?_her o I/0-intensive applications’ duplicates
. . . roughpu arger prediction error, can vary by 4x in I/O throughput
Pair of duplicate jobs so duplicates lie on a diagonal
[/O-heavy Compute-heavy [/O-heavy =~ Molecular
e Duplicate Jobs Benchmark 1 Benchmark Cosmology Benchmark 2 Dynamics
2.83x% |
I
2.00x
E 141x
£ 100 P F-—
2
B 0.71x
&
0.50x
0.35x
0.25x . ! >
10MiB/s 100MiB/s 1GiB/s  10GiB/s 100GiB/s 1TiB/s 0 250500 0 250500 0 250 5000 250 5000 250 500
I/O Throughput
ELECTRICAL & COMPUTER o
AHM ENGINEERING Argon ne
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Using Duplicates to Estimate Best-Case Accuracy

= Predicting I/O throughput of duplicate jobs Is easy

« Given an input, take the average 1/O throughput of all other duplicates you
have

= \We can use duplicates to estimate the upper bound on accuracy

* We use k-nearest neighbors (kNN) to predict 1/O throughput of non-
duplicate jobs, and compare results to duplicate predictions

Type Duplicates k=1 k=2 k=5 k=10 k=20

R? 0.974 0966 0972 0973 0.970 0.967

= \We see that R? of 0.974 is as far as we could push our models
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Increasing Prediction Accuracy on Out-of-Sample HPC jobs

= We now have both test sets that can reveal generalization (or lack of
thereof), as well as an estimate of best-case accuracy

* We now metaoptimize our ML models on DBSCAN & random test sets:

= We metaoptimize XGBoost gradient boosting trees on 4 parameters
« We evaluate 240 different configurations, each on two test sets

0
Number of trees Tree depth % of features each )0 of dataset each
new tree sees new tree sees
O O
;z ;; ;; 5; D D
<} =3
o o
) - \ ' ) -
ELECTRICAL & COMPUTER Feat re Features
AI‘ ENGINEERING Argon ne ; ures
® TEXAS A&M UNIVERSITY NATIONAL LABORATORY
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Random Test Set Grid Search

= Relatively small R? variance (0.97 — 0.98)
= More capacity (either number of trees, or tree depth) is better
* Trees perform better when they can see all features & datapoints

0.9790
X PR 09753 09771 l0_978 8 = 1G] 0.978 0.9784 (RS I
20 A » 2 - 0.9762 Sy
) £ & o oo {CFEE] 0.9782 0.9785 [LRLE] - 0.9785
2 g -0.976 5.3
2 £
o = o <
2 10- 22 % o Kk 0.9781 0.9785 XL
S - 0.974 g = - 0.9780
o l S o LEFAE 0.9783 0.9785 QIS I
0 1 1 1 1 § 0'972 | |
0.9700 0.9725 0.9750 0.9775 6 7 8 07 08 09 1.0
R score Depth Subsample
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DBSCAN-based Test Set Grid Search

= Far greater, but also lower R? range (0.90 — 0.94)
« Actually makes sense to metaoptimize — we can discriminate between experiments

= R? histogram reveals a set of configurations much better than avg.

= Models very sensitive to depth! Depth of 7 better than either 6 or 8
» No longer encouraged to overfit, SO more capacity is not always better?

= A specific configuration of sampling params (1, 0.8) yields best results

Lo = 10 S SLER 09374 0.9254 8 5 (209258 0925 0.9296 l 0,935
10 - column sample by tree = 0.8 VPSSR 09379  0.9259 .S'
g 2g | : PR 0.9205 [ ENRRIRA ] 0.9379
2 g g S - 0.930
S RSNl 09375 0.9257 £ :
2 51 7" é o {2 NEPAY 0.9466 0.9261
3 - (KL 09372 0.9252 g - 0.995
% BRI 09372 0.9249 3 2 -0.9283 0,9£88 0.9259 0.9241 I
0 T T T T 8 I 1 |
090 091 092 093 08 09 1.0
R? score Depth Subsample
ELECTRICAL & COMPUTER o
AlM ‘ ENGINEERING Argon ne
TEXAS AXM UNIVERSITY NATIONAL LABORATORY
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Evaluating Models in Production

» [et's evaluate a model with the best metaparameters on real-world data

= We compare two models:
« One metaoptimized on the randomly-sampled test set
* One metaoptimized on a DBSCAN-based test set

= We plot the error distribution on the right
e The DBSCAN model achieves 11% lower mean and 5.5% lower median error

Ox DBSCAN mean: 2.87x
Random mean: 3.22x
7% DBSCAN median: 1.48x
5 Random median: 1.55x
5 5
1 x .. H"""Illhlllun||Iu|||||||.|
2018-01 2019-01 2020-01 1x 2 X 3x 4x 5x
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Conclusion

= |n this work we: L
* Presented difficulties in deploying 1/O TS
throughput prediction models 1x LL
« Diagnosed training-test set similarity o |! : ,,_15{
as the cause of the problem g R
* Proposed a DBSCAN-based test set 1 | "“‘: o
generation method o 0 1 oor 01 1 T

Distance

« Estimated the upper bound on I/O
throughput prediction accuracy

Type Duplicates k=1 k=2 k=5 k=10 k=20

R? 0.974 0.966 0.972 0.973 0.970 0.967
« Showed that using the new test sets,
. " depth=7 o - 0, 0~

we can better meta-optimize models 1, & Do oo |

g g8 ' iig P 0.9305 0.9259
g £ o - 0.9305 £ - 0.930

E 5 E S -0.930 Z o {UCPRENKPANA 0.9266 0.9261
3 - 09288 E = | 0.925

K | BeSiEsisg comrumsR — Argonne @ s PR e
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