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• Much buzz over the last decades
• Potential for
• memory capacity scaling
• memory access performance
• fast persistence

• e.g., Intel Optane DC Persistent Memory



Our Contributions to Systems Software for 
Heterogeneous Memories

• pVM – OS support for persistent memory [EuroSys’16]
• HeteroOS – support for NVM in virtualized datacenters 

[ISCA’17]
• NoveLSM – NVM-specialized KV store [ATC’18]
• Performance isolation and implications of sharing of 

NVM [HPCA’14]
• Accelerate client applications [INFLOW’13]
• Energy-efficient persistence [CAL’15, PACT’16] 
• NVM-specialized checkpoint/restart [IPDPS’13]
• NVM-specialized streaming I/O [HPDC’18] 6

with Sudarsun Kannan, 
now at Rutgers University

Do we still need to work on 
heterogeneous memories?



Systems with Heterogeneous Memories

• Number and type of devices
• Performance, reliability, 

persistence, …
• Direct access mode or strict 

hierarchy
• Locality, on-node, to remote 

nodes… 
• Sharing
• Coherence
• Affinity to accelerators
• In-memory/controller/data-path 

accelerators Emerging Hybrid Memory Systems.
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• Number and type of devices
• Performance, reliability, persistence, …
• Direct access mode or strict hierarchy
• Locality, on-node, to remote nodes… 
• Sharing
• Affinity to accelerators
• Coherence
• In-memory/controller/data-path accelerators
• Software stack: file system, OS version, memory 

mapped, … 
• Page size
• Allocation policy, interleave, membind, 

localalloc,…
• Migration policy
• Management frequency
• CPU and cluster scheduler
• … 

Emerging Hybrid Memory Systems.



Complex Systems with Heterogeneous 
Memory Fabrics
• Scale and heterogeneity across the 

software/hardware boundary of 
the memory subsystem
• => Complex Memory Fabrics

• Existing policies and heuristics not 
built for this
• => Complex access and 

management policies and controls



Complexity == New Tradeoffs and Opportunities

Replace heuristics with 
data driven models, tools and 
techniques

Þ enable new intelligent, efficient 
and effective management of 
complex memory fabrics
Þ maximize technology benefits



Complexity == New Tradeoffs and Opportunities

• Scheduling data movement paths across 
memory fabric [HiPC’16]
• Selectively use DL for page placement 

[HPDC’19]
• Configure page management frequency

[MEMSYS’20, ….]
• Page size selection [CAL’20]
• Capacity allocation in workflows and multi-

tenant workloads [MEMSYS’17]
• Workflow placement on cluster servers […]

When does complex management pay off?
How to maximize the opportunity?



Phoenix: Data movement for PMEM-based Checkpoint I/O
Problem: Limited PMEM Bandwidth
• Support for highly concurrent PMEM access patterns: I/O from parallel computations 

(e.g., checkpoint, analytics pipelines…)
• Simultaneous bandwidth usage of both PMEM and DRAM
• Leverage fast interconnect bandwidth to remote DRAM

DRAM

PMEM

De-stage

Objects snapshots 
from application heap

Split the objects 
to DRAM & 

PMEM staging buffer



Example: Fusion simulation (GTC)

Checkpoint time is 
37% compared to 
compute

46% 
Improvement

12X

PMEM bandwidth 
seen by a core. 

18% 
improvement

pmem

PMEM

PMEM



Problem: How to use different paths to memory?

• How to split data ratio given the available bandwidths?
• When and which data to prioritize for staging?

• Early access variables allow for optimizations such as pre-copy
• e.g., based on runtime profiling

• What do we need to optimize for? 
• memory budget allocated, performance, energy



Problem: Which Pages to Move?
Dynamic Data Management in Hybrid Memory Systems



Problem: Which Pages to Move?
Dynamic Data Management in Hybrid Memory Systems

1. Challenge
Use of Non Volatile Memory (NVM) to extend main memory capacity 

reduces the system cost in return for application performance degradation.

2. Approach
Timely allocation in DRAM of frequently accessed (hot) data through 

periodic data migrations can boost application performance.

3. Problem
How to predict which data is hot so as to timely migrate it in DRAM.

Application

hot pages cold pages

Non Volatile MemoryDRAM

Hybrid Memory Hardware

Page Scheduler
periodically

⟵ access frequency ⟵

hot pages cold pages



Existing Solutions
Leave a significant gap for possible performance improvements

The higher
The worse

Simple history-based page scheduling methods may end up causing significant 
additional performance degradation in applications executing over hybrid memory systems. 

We need something more clever to close the gap!

Oracle = 0%

History = x%

Added Performance 
Reduction due to 
Page Scheduling



Solution Design
Questions that need to be answered

Page Scheduler
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hot pages cold pages

Past 
Page Access 
Information

Page access prediction for 
current scheduling epoch

How can we use Machine Intelligence in order to combine past
access information into an accurate prediction of future behavior?

Design Questions:
1. Which Machine Intelligence (MI) method to use?
2. What are the insights that MI can provide for page scheduling?

Evaluation Questions:
1. How much can it reduce the performance gap? How accurate are the predictions?
2. Is it practical to integrate into future systems?



Solution Design
Per Page Prediction of number of accesses

Approach:
● Apply RNNs on the page subset whose timely DRAM allocation 

brings significant performance improvement.
● Incorporate lightweight current state-of-the art solutions without 

machine intelligence for the remaining pages.
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hot data cold data

Not really scalable..
HPC and Big Data applications can have millions of pages!

Access counts 
across previous

scheduling epochs

Page access count prediction for 
current scheduling epoch



Evaluation
Kleio closes on average 80% of the performance gap

Oracle

History

History
selected pages

rest of the pages

all pages

Baseline = 0%

Optimal = 100%

RNN

History

selected pages

rest of the pages

Kleio

For fixed DRAM:NVM capacity.
For 100 selected pages.

More than 95% for half of the applications!The higher
The better



Problem: When to move pages?

• Does it matter?

• Cori: data-driven and system-
level tool for configuring 
memory management 
periodicity

Solution Period Duration Requests per Period
Thermostat [5] 10 sec 100,000

Nimble [38] 5 sec 50,000
Ingens [23] 2 sec 20,000
HMA [30] 1 sec 10,000

Hetero-OS [21], -Visor [17] 0.1 sec 1,000
Kleio [11] 0.01 sec 100

Unimem [36] MPI phase N/A

TABLE I: Frequency of data monitoring and movement across
existing solutions mapped to our simulation-based analogy.

overheads. In addition, the periodic solutions in Table I fix
their operational frequency at the system-level, so that they do
not have to repeat the empirical tuning for every application.
However, this can potentially leave a significant amount of
unexploited performance for applications with data access
behaviors and sizes that the empirical tuning did not consider.
Another approach is to completely rely on the application
to explicitly control data allocation and movement, via use
of specialized pragmas or malloc-like APIs. Such modified
applications then explicitly control how the underlying system-
level solution maintains the necessary state to dynamically
manage data tiering across hybrid memory [6], [13], [36], [37].
Problem Statement. Impractical tuning overheads and lack of
insight force existing data tiering solutions to rely on empirical
tuning of their operational frequency, or on application-level
modifications suitable for specific execution models and APIs.
As a result, for general scenarios where modifying the appli-
cations is not appropriate, there can be significant levels of
performance that existing data tiering solutions do not realize
across applications, due to their empirically-tuned and fixed
operational frequency.
Paper Contributions. To address this, we propose Cori –
a system-level solution for tuning the operational periods
in page schedulers, that maximizes the effectiveness of the
schedulers in terms of application performance and platform
efficiency, and achieves that with low tuning overheads. Cori
operates in an application and runtime-agnostic manner, and
relies on observation-based insights to guide the frequency
tuning process to a small number of viable candidates. We
demonstrate that Cori is effective, irrespective of the data
access behavior and page scheduling effectiveness, and can
be practically integrated into the existing hybrid memory
management software stack.
The specific contributions of this paper are the following:
• We demonstrate that current data tiering solutions can

experience 10%-100% performance loss due to sub-optimal
choice of their operational frequencies (Section III-A).

• We identify a relationship among observable application
properties – their data reuse – and the favorable scheduling
periods (Section III-C).

• We describe the design of Cori1 and its frequency tuning
methodology, for a simulation-based prototype and in real
system settings. (Section IV).

1The name is inspired by the ancient Greek mythology, where Cori (short
for Terpsichore) was the muse of dance and daughter of Mnemosyne, the
goddess of memory.

Application Abbrv. Suite Domain
Back Propagation backprop Rodinia Machine Learning

Kmeans kmeans Rodinia Machine Learning
HotSpot hotspot Rodinia Physics Simulation

LU Decomposition lud Rodinia Linear Algebra
Breadth-First Search bfs Rodinia Graph Algorithms

B+Tree bptree Rodinia Databases
Pennant pennant Coral-2 Hydrodynamics

Quicksilver quicksilver Coral-2 Monte-Carlo
CP Decomposition cpd ParTI! Sparse Tensors

TABLE II: Applications used in experiments.

• We evaluate Cori, demonstrating its ability to identify
operational frequencies which realize performance improve-
ments within only 3% from the ideal frequency selec-
tion, on average, across applications and page scheduling
variations. Cori achieves this with 5⇥ fewer number of
tuning trials, compared to insight-less tuning approaches
(Sections V-A, V-B).
• We validate Cori’s insights, effectiveness and practicality
on a real hardware testbed with DRAM and Intel’s Optane
DC PMEM (Section V-C).

II. METHODOLOGY

Applications. Table II summarizes the applications that we
selected for experimental evaluation from the Rodinia [7],
Coral-2 [1] and ParTI! [25] benchmark suites. The selected
benchmarks and mini-apps cover a wide range of application
domains and memory access patterns.

A. Optane DC PMEM Platform
We have access to a server with Intel Optane DC Persistent

Memory Modules (PMEM), which we configure in App Direct
mode. The machine contains 375 GB of DRAM and 6 TB
of PMEM. We implement a page migration module2 for
Linux kernel version 5.4 that attaches to a target process and
periodically selects 4 KB pages to move between DRAM and
PMEM. Every period, we identify page accesses using the
available OS-level information, as also done in [17], [21]. The
module determines which pages were accessed by scanning
the target’s page table entries and recording whether or not
each accessed bit was set during that period. To estimate the
page hotness, we calculate the exponential moving average
(with a certain smoothing factor) of the page’s accessed bit
history and compare it with a hotness threshold that classifies
a page as hot or cold, as also done in [23]. Then, utilizing
the move_pages() function from the kernel’s NUMA-based
migration API, we asynchronously move hot pages to DRAM
and cold pages to PMEM. The kernel module dynamically
adjusts the page migration cutoff, dividing the process memory
footprint across DRAM and PMEM at a certain capacity ratio.

B. Simulation
Memory Access Trace Collection. We use Intel’s Pin [4]
dynamic binary instrumentation tool to capture the memory
address of the last level cache misses out of a simulated three

2https://github.com/GTkernel/x86-Linux-Page-Scheduler.git

No single answer



Problem: When to move pages?

• Does it matter?

• Cori: data-driven and system-
level tool for configuring 
memory management 
periodicity
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overheads. In addition, the periodic solutions in Table I fix
their operational frequency at the system-level, so that they do
not have to repeat the empirical tuning for every application.
However, this can potentially leave a significant amount of
unexploited performance for applications with data access
behaviors and sizes that the empirical tuning did not consider.
Another approach is to completely rely on the application
to explicitly control data allocation and movement, via use
of specialized pragmas or malloc-like APIs. Such modified
applications then explicitly control how the underlying system-
level solution maintains the necessary state to dynamically
manage data tiering across hybrid memory [6], [13], [36], [37].
Problem Statement. Impractical tuning overheads and lack of
insight force existing data tiering solutions to rely on empirical
tuning of their operational frequency, or on application-level
modifications suitable for specific execution models and APIs.
As a result, for general scenarios where modifying the appli-
cations is not appropriate, there can be significant levels of
performance that existing data tiering solutions do not realize
across applications, due to their empirically-tuned and fixed
operational frequency.
Paper Contributions. To address this, we propose Cori –
a system-level solution for tuning the operational periods
in page schedulers, that maximizes the effectiveness of the
schedulers in terms of application performance and platform
efficiency, and achieves that with low tuning overheads. Cori
operates in an application and runtime-agnostic manner, and
relies on observation-based insights to guide the frequency
tuning process to a small number of viable candidates. We
demonstrate that Cori is effective, irrespective of the data
access behavior and page scheduling effectiveness, and can
be practically integrated into the existing hybrid memory
management software stack.
The specific contributions of this paper are the following:
• We demonstrate that current data tiering solutions can

experience 10%-100% performance loss due to sub-optimal
choice of their operational frequencies (Section III-A).

• We identify a relationship among observable application
properties – their data reuse – and the favorable scheduling
periods (Section III-C).

• We describe the design of Cori1 and its frequency tuning
methodology, for a simulation-based prototype and in real
system settings. (Section IV).
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• We evaluate Cori, demonstrating its ability to identify
operational frequencies which realize performance improve-
ments within only 3% from the ideal frequency selec-
tion, on average, across applications and page scheduling
variations. Cori achieves this with 5⇥ fewer number of
tuning trials, compared to insight-less tuning approaches
(Sections V-A, V-B).
• We validate Cori’s insights, effectiveness and practicality
on a real hardware testbed with DRAM and Intel’s Optane
DC PMEM (Section V-C).

II. METHODOLOGY

Applications. Table II summarizes the applications that we
selected for experimental evaluation from the Rodinia [7],
Coral-2 [1] and ParTI! [25] benchmark suites. The selected
benchmarks and mini-apps cover a wide range of application
domains and memory access patterns.

A. Optane DC PMEM Platform
We have access to a server with Intel Optane DC Persistent

Memory Modules (PMEM), which we configure in App Direct
mode. The machine contains 375 GB of DRAM and 6 TB
of PMEM. We implement a page migration module2 for
Linux kernel version 5.4 that attaches to a target process and
periodically selects 4 KB pages to move between DRAM and
PMEM. Every period, we identify page accesses using the
available OS-level information, as also done in [17], [21]. The
module determines which pages were accessed by scanning
the target’s page table entries and recording whether or not
each accessed bit was set during that period. To estimate the
page hotness, we calculate the exponential moving average
(with a certain smoothing factor) of the page’s accessed bit
history and compare it with a hotness threshold that classifies
a page as hot or cold, as also done in [23]. Then, utilizing
the move_pages() function from the kernel’s NUMA-based
migration API, we asynchronously move hot pages to DRAM
and cold pages to PMEM. The kernel module dynamically
adjusts the page migration cutoff, dividing the process memory
footprint across DRAM and PMEM at a certain capacity ratio.

B. Simulation
Memory Access Trace Collection. We use Intel’s Pin [4]
dynamic binary instrumentation tool to capture the memory
address of the last level cache misses out of a simulated three

2https://github.com/GTkernel/x86-Linux-Page-Scheduler.git

• Yes! 
• On a real system -> 50% performance 

loss, worse as data size increases

Is this practical? Can we get the data?
• Yes! Hardware bits, compiler passes
• Beacons w/ Santosh Pande’s group



Problem: When, which, where to move pages?

• Does it matter?

• Cori: data-driven and system-
level tool for configuring 
memory management 
periodicity

Solution Period Duration Requests per Period
Thermostat [5] 10 sec 100,000

Nimble [38] 5 sec 50,000
Ingens [23] 2 sec 20,000
HMA [30] 1 sec 10,000

Hetero-OS [21], -Visor [17] 0.1 sec 1,000
Kleio [11] 0.01 sec 100

Unimem [36] MPI phase N/A

TABLE I: Frequency of data monitoring and movement across
existing solutions mapped to our simulation-based analogy.

overheads. In addition, the periodic solutions in Table I fix
their operational frequency at the system-level, so that they do
not have to repeat the empirical tuning for every application.
However, this can potentially leave a significant amount of
unexploited performance for applications with data access
behaviors and sizes that the empirical tuning did not consider.
Another approach is to completely rely on the application
to explicitly control data allocation and movement, via use
of specialized pragmas or malloc-like APIs. Such modified
applications then explicitly control how the underlying system-
level solution maintains the necessary state to dynamically
manage data tiering across hybrid memory [6], [13], [36], [37].
Problem Statement. Impractical tuning overheads and lack of
insight force existing data tiering solutions to rely on empirical
tuning of their operational frequency, or on application-level
modifications suitable for specific execution models and APIs.
As a result, for general scenarios where modifying the appli-
cations is not appropriate, there can be significant levels of
performance that existing data tiering solutions do not realize
across applications, due to their empirically-tuned and fixed
operational frequency.
Paper Contributions. To address this, we propose Cori –
a system-level solution for tuning the operational periods
in page schedulers, that maximizes the effectiveness of the
schedulers in terms of application performance and platform
efficiency, and achieves that with low tuning overheads. Cori
operates in an application and runtime-agnostic manner, and
relies on observation-based insights to guide the frequency
tuning process to a small number of viable candidates. We
demonstrate that Cori is effective, irrespective of the data
access behavior and page scheduling effectiveness, and can
be practically integrated into the existing hybrid memory
management software stack.
The specific contributions of this paper are the following:
• We demonstrate that current data tiering solutions can

experience 10%-100% performance loss due to sub-optimal
choice of their operational frequencies (Section III-A).

• We identify a relationship among observable application
properties – their data reuse – and the favorable scheduling
periods (Section III-C).

• We describe the design of Cori1 and its frequency tuning
methodology, for a simulation-based prototype and in real
system settings. (Section IV).
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for Terpsichore) was the muse of dance and daughter of Mnemosyne, the
goddess of memory.

Application Abbrv. Suite Domain
Back Propagation backprop Rodinia Machine Learning

Kmeans kmeans Rodinia Machine Learning
HotSpot hotspot Rodinia Physics Simulation

LU Decomposition lud Rodinia Linear Algebra
Breadth-First Search bfs Rodinia Graph Algorithms

B+Tree bptree Rodinia Databases
Pennant pennant Coral-2 Hydrodynamics

Quicksilver quicksilver Coral-2 Monte-Carlo
CP Decomposition cpd ParTI! Sparse Tensors

TABLE II: Applications used in experiments.

• We evaluate Cori, demonstrating its ability to identify
operational frequencies which realize performance improve-
ments within only 3% from the ideal frequency selec-
tion, on average, across applications and page scheduling
variations. Cori achieves this with 5⇥ fewer number of
tuning trials, compared to insight-less tuning approaches
(Sections V-A, V-B).
• We validate Cori’s insights, effectiveness and practicality
on a real hardware testbed with DRAM and Intel’s Optane
DC PMEM (Section V-C).

II. METHODOLOGY

Applications. Table II summarizes the applications that we
selected for experimental evaluation from the Rodinia [7],
Coral-2 [1] and ParTI! [25] benchmark suites. The selected
benchmarks and mini-apps cover a wide range of application
domains and memory access patterns.

A. Optane DC PMEM Platform
We have access to a server with Intel Optane DC Persistent

Memory Modules (PMEM), which we configure in App Direct
mode. The machine contains 375 GB of DRAM and 6 TB
of PMEM. We implement a page migration module2 for
Linux kernel version 5.4 that attaches to a target process and
periodically selects 4 KB pages to move between DRAM and
PMEM. Every period, we identify page accesses using the
available OS-level information, as also done in [17], [21]. The
module determines which pages were accessed by scanning
the target’s page table entries and recording whether or not
each accessed bit was set during that period. To estimate the
page hotness, we calculate the exponential moving average
(with a certain smoothing factor) of the page’s accessed bit
history and compare it with a hotness threshold that classifies
a page as hot or cold, as also done in [23]. Then, utilizing
the move_pages() function from the kernel’s NUMA-based
migration API, we asynchronously move hot pages to DRAM
and cold pages to PMEM. The kernel module dynamically
adjusts the page migration cutoff, dividing the process memory
footprint across DRAM and PMEM at a certain capacity ratio.

B. Simulation
Memory Access Trace Collection. We use Intel’s Pin [4]
dynamic binary instrumentation tool to capture the memory
address of the last level cache misses out of a simulated three

2https://github.com/GTkernel/x86-Linux-Page-Scheduler.git

The lower 
the better



Takeaways

• Memory fabric heterogeneity introduces new tradeoffs & opportunities
• From a small set of best practices

• acceptable due to lower complexity, trivial decision, smaller scope
• To an explosion of choices with major impact on performance and efficiency
• Many more examples with similar observations

• Data-driven decisions on how to use new technologies as a path forward
• Rethink cross-stack techniques for making it possible and practical
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