Data-centric Resource Management for Complex Memory Fabrics

Ada Gavrilovska

Thaleia Dimitra Doudali, Pradeep Fernando Tony Mason, Ranjan Venkatesh Sarpangala, Daniel Zahka Georgia Tech

The Era of Data

The Era of Data

- BIG DATA
- Fast data
- HETEROGENEOUS DATA
- Noisy data
- metadata

The Era of Data and Extreme Heterogeneity

- BIG DATA
- Fast data
- HETEROGENEOUS DATA
- Noisy data
- metadata

Heterogeneous Memories

- Much buzz over the last decades
- Potential for
 - memory capacity scaling
 - memory access performance
 - fast persistence
- e.g., Intel Optane DC Persistent Memory

	НВМ	DRAM	PCM/3D-XPoint DIMMs	3D-XPoint (NVMe)	Flash/NAND
capacity	0.1x	1x	4-10x	4-10x	10x
read latency	1x	1x	2-3x	10x	10,000x
write lantecy	1x	1x	5x	10x	10,000x
bandwidth	10x	1x	0.1x	PCIe 3.0 now	

Our Contributions to Systems Software for Heterogeneous Memories

- pVM OS support for persistent memory [EuroSys'16]
- HeteroOS support for NVM in virtualized datacenters [ISCA'17]
- NoveLS
- Perforn NVM [H
- Acceler
- Energy-

Do we still need to work on heterogeneous memories?

ith Sudarsun Kannan, ow at Rutgers University

- NVM-specialized checkpoint/restart [IPDPS'13]
- NVM-specialized streaming I/O [HPDC'18]

Systems with Heterogeneous Memories

- Number and type of devices
- Performance, reliability, persistence, ...
- Direct access mode or strict hierarchy
- Locality, on-node, to remote nodes...
- Sharing
- Coherence
- Affinity to accelerators
- In-memory/controller/data-path accelerators

Emerging Hybrid Memory Systems.

Systems with Heterogeneous Memories

- Number and type of devices
- Performance, reliability, persistence, ...
- Direct access mode or strict hierarchy
- Locality, on-node, to remote nodes...
- Sharing
- Affinity to accelerators
- Coherence
- In-memory/controller/data-path accelerators
- Software stack: file system, OS version, memory mapped, ...
- Page size
- Allocation policy, interleave, membind, localalloc,...
- Migration policy
- Management frequency
- CPU and cluster scheduler

Emerging Hybrid Memory Systems.

•

Complex Systems with Heterogeneous Memory Fabrics Applications: Big and Fast Science and Analytics

- Scale and heterogeneity across the software/hardware boundary of the memory subsystem
- => Complex Memory Fabrics
- Existing policies and heuristics not built for this
- => Complex access and management policies and controls

Complexity == New Tradeoffs and Opportunities

Replace *heuristics* with data driven models, tools and techniques

- ⇒ enable new intelligent, efficient and effective management of complex memory fabrics
- \Rightarrow maximize technology benefits

Complexity == New Tradeoffs and Opportunities

When does complex management pay off?

How to maximize the opportunity?

- Scheduling data movement paths across memory fabric [HiPC'16]
- Selectively use **DL for page placement** [HPDC'19]
- Configure **page management frequency** [MEMSYS'20,]
- Page size selection [CAL'20]
- Capacity allocation in workflows and multitenant workloads [MEMSYS'17]
- Workflow placement on cluster servers [...]

Phoenix: Data movement for PMEM-based Checkpoint I/O

Problem: Limited PMEM Bandwidth

- Support for highly concurrent PMEM access patterns: I/O from parallel computations (e.g., checkpoint, analytics pipelines...)
- Simultaneous bandwidth usage of both PMEM and DRAM
- Leverage fast interconnect bandwidth to remote DRAM

PMEM per-core bandwidth

Problem: How to use different paths to memory?

- How to split data ratio given the *available* bandwidths?
- When and which data to prioritize for staging?
 - Early access variables allow for optimizations such as *pre-copy*
 - e.g., based on runtime profiling
- What do we need to optimize for?
 - memory budget allocated, performance, energy

Problem: Which Pages to Move?

Dynamic Data Management in Hybrid Memory Systems

Problem: Which Pages to Move?

Dynamic Data Management in Hybrid Memory Systems

Existing Solutions

Leave a significant gap for possible performance improvements

Solution Design Questions that need to be answered

How can we use **Machine Intelligence** in order to combine *past* access information into an *accurate prediction* of *future* behavior?

Design Questions:

- 1. Which Machine Intelligence (MI) method to use?
- 2. What are the insights that MI can provide for page scheduling?

Evaluation Questions:

- 1. How much can it reduce the performance gap? How accurate are the predictions?
- 2. Is it practical to integrate into future systems?

Solution Design

Per Page Prediction of number of accesses

Access counts across previous scheduling epochs

Not really scalable..

HPC and Big Data applications can have millions of pages!

Approach:

- Apply RNNs on the page subset whose timely DRAM allocation brings significant performance improvement.
- Incorporate **lightweight current state-of-the art** solutions without machine intelligence for the **remaining pages**.

Evaluation

Kleio closes on average 80% of the performance gap

Problem: When to move pages?

• Does it matter?

Solution	Period Duration		
Thermostat [5]	10 sec		
Nimble [38]	5 sec		
Ingens [23]	2 sec		
HMA [30]	1 sec		
Hetero-OS [21], -Visor [17]	0.1 sec		
Kleio [11]	0.01 sec		
Unimem [36]	MPI phase		

TABLE I: Frequency of data monitoring and movement across existing solutions mapped to our simulation-based analogy.

 Cori: data-driven and systemlevel tool for configuring memory management periodicity

Problem: When to move pages?

Problem: When, which, where to move pages?

Takeaways

- Memory fabric heterogeneity introduces new tradeoffs & opportunities
 - From a small set of best practices
 - acceptable due to lower complexity, trivial decision, smaller scope
 - To an explosion of choices with major impact on performance and efficiency
 - Many more examples with similar observations
- Data-driven decisions on how to use new technologies as a path forward
- Rethink cross-stack techniques for making it possible and practical

KERNEL Group

Ada Gavrilovska

Greg Eisenhauer

Ketan Bhardwaj

Ranjan S. Venkatesh

Harshit Daga

Jin Heo

Carol Hsu

Misun Park

Rafael Oliveira

Pradeep Fernando

Daniel Zahka

Tony Mason

Vaibhav Bhasole

facebook **SAMSUNG**

SRC OCOC Applications Driving Architectures

Takeaways

- Memory fabric heterogeneity introduces new tradeoffs & opportunities
 - From a small set of best practices
 - acceptable due to lower complexity, trivial decision, smaller scope
 - To an explosion of choices with major impact on performance and efficiency
 - Many more examples with similar observations
- Data-driven decisions on how to use new technologies as a path forward
- Rethink cross-stack techniques for making it possible and practical