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Excess Resources in the Cloud
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What are Volatile Resources?
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Arming Users with Information
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Maximizing Value of Volatile Resources

e What information model do users need to maximize their value of
volatile resources

* Assume if user value maximized = cloud providers can sell for more

money
Information Models
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Main Contributions

* Show a specific information model that dramatically increases users’
ability to achieve value (small)

* Cloud providers can provide information models without
compromising internal resource management flexibility

* Results are robust over 608 AWS Spot Instance pools
e 4 regions, millions of CPUs



Information Models

* What information enables users to target volatile resources to extract
most value?

e Interval duration PDF's

AN

1. MTTR 2. 10pctile 3.90pctile Full
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Evaluation of Information Models

* Resource Dynamics: 3-month 608 AWS Spot Instance pools
* 5 minute intervals, 15 million data points

e User behavi

e Utility funct |

e Match con
* Maximize

* Step funct

* Metrics:

Chien - ROSS 2019

 Total User

ity

eriodic

diurnal p

12

10 -

(o]
1

(o]
1

-
1

ZdOO
availability standard deviation

to revocation)
on the intervals



Evaluation: Total Value vs. Information Models
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 Comparing three information models

* 90pctile gives best results
e 30% value increase
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Evaluation: Total Value of Information Models
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e Comparing three information models, and Full is a reference

* 90pctile gives best results
e 30% value increase

* Limited information models can achieve most of the benefit of Full, 90%
e Results are robust over vast majority of 608 instance pools

Chien - ROSS 2019

10



Evaluation: Robustness of Info Model Benefit
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* But, cloud providers use a range of volatile resource management
(VRM, revocation) policies?

* Information Model benefit and ordering is robust across
* Arange of VRMs
* All 608 instance pools
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Information Models: Summary

* |t’s hard for users to maximize value with no information, and cloud
providers afraid of sharing too much

e With just limited information (mean + 90th percentile) dramatically
increase user value v
T
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* However, cloud providers worry that information model will constrain
resource management



Challenge: Statistical Guarantees and

Resource Management “Freedom”

* So, if we gave out an information model (statistical guarantee) :

Does it constrain resource management?

* Changed foreground load = Changed statistics

Volatile resource availability

Original foreground load

Increased Magnitude

Increased frequency



What about a Change in Magnitude?

e Consider drastic reduction
in volatile resources (1->1/K)

*K=1,2,3

* How does this affect 90pctile?
e 2-week sliding window
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What about a Change in Frequency?

2000 * Increase volatile resource

‘ \ variation frequency by
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Can We Preserve the Guarantee?

* |dea: Guarantee-Preserving Resource
Management

* Maintain 90pctile guarantee under frequency
change
 Offline Static Algorithm

* Reshape the distribution by withholding each
interval for X minutes

 kills short intervals, shortens long intervals

* What is the best X?

R

* Find smallest X that preserves guarantee
X minutes




Online Dynamic Algorithms
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* |[dea: AIMD, Online Targeting

* Doubles the 90pctile — preserves
the guarantee and reduces job
failures

* Info Model => Good user value

* Preserving RM => Providers’
flexibilities
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Classitying 608 Instance Types
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Evaluation: Preserving 90pctile Guarantees
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e Guarantee Preserving Algorithms
 Effective for Stable pools
e Helpful for Transition pools
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Related Work

* VVolatile Resource Characterization
* Characterization of price [Javadi 2011, Tang 2012, Wolski 2017], revocation
behavior [Chohan 2010]
* Engineering Reliable Resources

* Checkpointing [Khatua 2013], replication [Voorsluys 2012, Xu 2016 ],
migration [Yi 2013, Jung 2013]

* Construct an “economy class” of nearly reliable resources [Carvalho 2014]

e Value of Information
* Transient guarantee [Shastri 2016]

* Guarantee Preserving Algorithms
* None



Summary & Future Work

Small information model = large increase in user value
* 90pctile info model: two numbers
* 30% average increase, up to 2X
* 90% of the benefit of full disclosure

Guarantee preserving algorithms can preserve guarantees and maintain cloud
provider’s flexibility

Results robust over 608 AWS Spot Instance pools

For more information: http://zccloud.cs.uchicago.edu/ and

Chaojie Zhang, Varun Gupta, and Andrew A. Chien, Information Models: Creating
and Preserving Value in Volatile Cloud Resources, in the IEEE International
Conference on Cloud Engineering (IC2E), June 2019, Prague, Czechoslovakia.
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