
Direct-FUSE: Removing the Middleman
for High-Performance

FUSE File System Support
Yue Zhu*, Teng Wang*,

Kathryn Mohror+, Adam Moody+, Kento Sato+,
Muhib Khan*, Weikuan Yu*

Florida State University*
Lawrence Livermore National Laboratory+

ROSS’18 S-2

Outline

• Background & Motivation

·Design

·Performance Evaluation

·Conclusion

ROSS’18 S-3

Introduction
n High-performance computing (HPC) systems needs efficient

file system for supporting large-scale scientific applications
Ø Different file systems are used for different kinds of data in a single job
Ø Both kernel- and user-level file systems can be used in the applications
Ø Due to kernel-level file systems’ development complexity, reliability and

portability issues, user-level file systems are more leveraged for
particular I/O workloads with special purpose

n Filesystem in UserSpacE (FUSE)
Ø A software interface for Unix-like computer operating systems
Ø It allows non-privileged users to create their own file systems without

modifying kernel code
Ø User defined file system is run as a separate process in user-space
Ø Example: SSHFS, GlusterFS client, FusionFS(BigData’14)

ROSS’18 S-4

How does FUSE Work?
n Execution path of a function call

Ø Send the request to the user-level file system process
o App program → VFS → FUSE kernel module → User-level file system

process

Ø Return the data back to the application program
o User-level file system process → FUSE kernel module → VFS → App

program
Application Program User Level File System

Ext4

Storage Device

User Space

Kernel Space

FUSE

Page Cache

Virtual File System (VFS)

ROSS’18 S-5

FUSE File System vs. Native File System
FUSE File System Native File System

User-kernel
Mode Switch 4 2

Context
Switch 2 0

Memory
Copies 2 1

Application Program User Level File System

Ext4

Storage Device

User Space

Kernel Space

FUSE

Page Cache

Virtual File System (VFS)

ROSS’18 S-6

Number of Context Switches & I/O Bandwidth
n The complexity added in FUSE file system execution path

causes performance degradation in I/O bandwidth
Ø tmpfs: a file system that stores data in volatile memory
Ø FUSE-tmpfs: a FUSE file system deployed on top of tmpfs
Ø dd micro-benchmark and perf system profiling tool are used to gather the I/O

bandwidth and the number of context switches
Ø Experiment method: continually issue 1000 writes

Write Bandwidth # Context Switches

Block
Size (KB)

FUSE-tmpfs
(MB/s)

tmpfs
(GB/s)

FUSE-
tmpfs

tmpfs

4 163 1.3 1012 7
16 372 1.6 1012 7
64 519 1.7 1012 7
128 549 2.0 1012 7
256 569 2.4 2012 7

ROSS’18 S-7

Breakdown of Metadata & Data Latency
n The actual file system operations (i.e. metadata or data

operations) only occupy a small amount of total execution time
Ø Tests are on tmpfs and FUSE-tmpfs
Ø Real Operation in metadata operation: the time of conducting operation
Ø Data Movement: the actual time of write in a complete write function call
Ø Overhead: the cost besides the above two, e.g. the time of context switches

0

100

200

300

400

500

600

1 4 16 64 128 256

La
te

nc
y

(n
s)

Transfer Sizes (KB)

Data Movement
Overhead

34.8%

33.7%

37.86%

15.82%10.08%

38.12%

0

50

100

150

200

250

La
te

nc
y

(n
s)

Metadata Operations

Real Operation
Overhead

Create Close

11.18%

2.17%

tmpfs FUSE-tmpfs tmpfs FUSE-tmpfs

Fig. 1. Time Expense in Metadata Operations Fig. 2. Time Expense in Data Operations

ROSS’18 S-8

Existing Solution and Our Approach
n How to reduce the overheads from FUSE?

Ø Build an independent user-space library to avoid going
through kernel (e.g., IndexFS (SC’14), FusionFS)

Ø However, this approach cannot support multiple FUSE
libraries with distinct file paths and file descriptors

n We propose Direct-FUSE to support multiple backend
I/O services to an application
Ø We adapted libsysio to our purpose in Direct-FUSE

o libsysio is developed by Scalability team of Sandia National Lab):
« a POSIX-like file I/O, and name space support for remote file systems

from an application’s user-level address space.

ROSS’18 S-9

Outline

·Background & Motivation

• Design

·Performance Evaluation

·Conclusion

ROSS’18 S-10

n Direct-FUSE mainly consists of three components
1. Adapted-libsysio

o Intercept file path and file descriptor for backend services identification
o Simplify metadata and data execution path in original libsysio

2. lightweight-libfuse (not real libfuse)
o Abstract file system operations from backend services to unified APIs

3. Backend services
o Provide defined file system operations (e.g., FusionFS)

The Overview of Direct-FUSE

Application Program

Ext4

Adapted-libsysio

lightweight-libfuse

FUSE-Ext4 FusionFS Client ….

FusionFS Server …

Backend
Services

Direct-FUSE

ROSS’18 S-11

Path and File Descriptor Operations
n To facilitate the interception of file system operations

for multiple backends, the operations are categorized
into two:

1. File path operations
i. Intercept prefix and path (e.g., sshfs:/sshfs/test.txt) and return mount

information
ii. Look up corresponding inode based on the mount information, and

redirect to defined operations

2. File descriptor operations
i. Find open-file record based on given file descriptor

« Open-file record contains pointers to inode, current stream position,
etc

ii. Redirect to defined operations based inode info in open-file record

ROSS’18 S-12

Requirements for New Backends
n Interact with FUSE high-level APIs
n Separated as an independent user-space library

Ø The library contains the fuse file system operations,
initialization function, and also the unmount function

Ø If a backend passes some specialized data to the fuse
module via fuse_mount(), then the data has to be globalized
for later file system operations

n Implemented in C/C++ or has to be binary compatible
with C/C++

ROSS’18 S-13

Outline

·Background and Challenges

·Design

• Performance Evaluation

·Conclusion

ROSS’18 S-14

Experimental Methodology
n We compare the bandwidth of Direct-FUSE with local

FUSE file system and native file system on disk and
memory by Iozone
Ø Disk

o Ext4-fuse: FUSE file system overlying Ext4
o Ext4-direct: Ext4-fuse bypasses the FUSE kernel
o Ext4-native: original Ext4 on disk

Ø Memory
o tmpfs-fuse, tmpfs-direct, and tmpfs-native are similar to the three tests on

disk

n We also compare the I/O bandwidth of distributed
FUSE file system with Direct-FUSE
Ø FusionFS: a distributed file system that supports metadata-

and write-intensive operations

ROSS’18 S-15

Sequential Write Bandwidth
n Direct-FUSE achieves comparable bandwidth

performance to the native file system
Ø Ext4-direct outperforms Ext4-fuse by 16.5% on average
Ø tmpfs-direct outperforms tmpfs-fuse at least 2.15x

1

10

100

1000

10000

4 16 64 256 1024B
an

dw
id

th
(M

B
/s

)

Write Transfer Sizes (KB)

Ext4-fuse Ext4-direct Ext4-native
tmpfs-fuse tmpfs-direct tmpfs-native

ROSS’18 S-16

Sequential Read Bandwidth
n Similar to the sequential write bandwidth, the read

bandwidth of Direct-FUSE is comparable to the
native file system
Ø Ext4-direct outperforms Ext4-fuse by 2.5% on average
Ø tmpfs-direct outperforms tmpfs-fuse at least 2.26x

1

10

100

1000

10000

4 16 64 256 1024B
an

dw
id

th
(M

B
/s

)

Read Transfer Sizes (KB)

Ext4-fuse Ext4-direct Ext4-native
tmpfs-fuse tmpfs-direct tmpfs-native

ROSS’18 S-17

Distributed I/O Bandwidth
n Direct-FUSE outperforms FusionFS in write

bandwidth and shows comparable read bandwidth
Ø Writes benefit more from the FUSE kernel bypassing

n Direct-FUSE delivers similar scalability results as the
original FusionFS

1

10

100

1000

10000

1 2 4 8 16

B
an

dw
id

th
 (M

B
/s

)

Number of Nodes

fusionfs direct-fusionfs

1

10

100

1000

10000

1 2 4 8 16

B
an

dw
id

th
(M

B
/s

)

Number of Nodes

fusionfs direct-fusionfs

Write Read

ROSS’18 S-18

Overhead Analysis
n The dummy read/write occupies less than 3% of the

complete I/O function time in Direct-FUSE, even
when the I/O size is very small
Ø Dummy write/read: no actual data movement, directly

return once reach the backend service
Ø Real write/read: the actual Direct-FUSE read and write I/O

calls

1

10

100

1000

10000

1B 4B 16B 64B 256B 1KB

L
at

en
cy

 (n
s)

Transfer Sizes

dummy write real write

1

10

100

1000

10000

1B 4B 16B 64B 256B 1KB

L
at

en
cy

 (n
s)

Transfer Sizes

dummy read real read

ROSS’18 S-19

Conclusions
Ø We have revealed and analyzed the context switches count and

time overheads in FUSE metadata and data operations

Ø We have designed and implemented Direct-FUSE, which can
avoid crossing kernel boundary and support multiple FUSE
backends simultaneously

Ø Our experimental results indicate that Direct-FUSE achieves
significant performance improvement compared to original FUSE
file systems

ROSS’18 S-20

Sponsors of This Research

