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Multicore Systems & Big-memory Applications

• Multicore systems with huge caches and many cores are ubiquitous

➢ e.g., SPARC T7-1: 32 cores (256 vCPUs), 64MB L3 cache, and 512GB RAM

➢ Maximizes performance of emerging big-memory workloads (databases, 
graph analytics, key-value stores, and HPC workloads)

• Big-memory applications

➢ Require many virtual-to-physical address translations in page tables and TLBs

➢ e.g., consumes ~51% of execution cycles just on TLB misses [ISCA’13]
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[ISCA’13] A. Basu et al., Efficient Virtual Memory for Big Memory Servers. In Proceedings of ISCA, 2013.



Huge Pages

• Modern hardware and OS introduced support for huge pages

➢ e.g., Linux (kernel 2.6.39) on T7 supports 8MB, 2GB, and 16GB (default 8KB)

➢ Improves performance and system utilization by reducing TLB miss rate

• Creating a huge page is an expensive operation

➢ Need to zero the page through kernel memset()

➢ e.g., while creating a 2GB page takes 322 msec, zeroing it takes 320 msec

➢ Zeroed during kernel initialization (booting) and whenever application requests

➢ Big-memory applications need 100s of huge pages → zeroing operation 
impacts kernel initialization times (application startup times/serviceability)
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This Work

• Exploits T7 and its co-processors (DAX) to speed up the creation of huge 
pages by up to 11x → improves database startup time up to 6x

• Presents an enhanced memset() that uses T7 co-processors → improves 
JVM Garbage Collector latencies by 4x
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On a SPARC T7-1 running Oracle Linux (2.6.39)
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Kernel memset()
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80 Million Times

• 99.9% calls are for zeroing

During kernel initialization



Zeroing Huge Pages

7

• clear_huge_page() takes 320 msecs to zero a 2GB huge page

void clear_huge_page(struct page *page, 
unsigned long addr, 
unsigned int pages_per_huge_page
)

{
...
for (i = 0; i < pages_per_huge_page; i++) {

cond_resched();

// calls kernel memset()
clear_user_highpage(page + i, addr + i * PAGE_SIZE);

}
}



Improving clear_huge_page()
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• Kernel Threads

• Work Queues (a pool of worker threads)

Technique 8MB page 2GB page

Kernel Threads 2.0x 4.9x

Work Queues 4.0x 5.0x

• Multithreaded kernel memset()

➢ Complexity of using multiple kernel threads? (Software Engineering)

➢ Spawning multiple kernel threads on a loaded system? (Performance)



SPARC T7 & DAX (1)
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• T7 processor has 8 co-processor units (DAX)

• Data is directly read from and written to the memory space

• Multiple tasks (or commands) can be simultaneously submitted and 
hypervisor controls queuing and scheduling

• DAX calls are asynchronous (mwait instruction can be used to monitor 
the status → facilitates heterogeneous computing)



SPARC T7 & DAX (2)
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• How to request DAX?

➢ Fill in a ccb (coprocessor control block) with the operation to be done, pointers 
to various memory regions, sizes, etc.

➢ Call hypervisor API: hypervisor distributes ccb commands (tasks or DAX 
requests) across DAX units

• Only works on contiguous memory -- page boundaries cannot be 
crossed by a single command (task)

• Max. ccb blocks per ccb_command (or DAX request) are 15 

• Max. concurrent ccb_commands are 64
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DAX memset()
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• Assumes contiguous memory (effective for huge pages)

• As memset(address, fill_value, size), where [address..address+size] 
must reside on one page

/* fill coprocessor control block (ccb) */
ccb_fill_t ccb;
….
ccb.tl.hdr.opcode = CCB_MSG_OPCODE_FILL;
ccb.ctl.hdr.at_dst = CCB_AT_VA;
ccb.imm_op = fill_value;
ccb.ctl.size = size;
...

/* ccb_submit to DAX */
hypercall(completion_area, &ccb, …);
…..
mwait()
....



DAX memset()  (cont…)
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DAX memset()  (cont…)
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CPU Hypervisor
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DAX memset()  vs Multithreaded Techniques
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Technique 8MB page 2GB page

Kernel Threads 2.0x 4.9x

Work Queues 4.0x 5.0x

DAX 8.0x 11.0x
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Hybrid DAX memset (1)
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• Identify the discontinuities in physical memory corresponding to the 
entire virtual buffer – need to do a page table lookup for each page

• Derive a scatter-gather list: a list of contiguous memory chunks (starting 
address of the memory region and its length)

➢ e.g., { [0x100, 200]; [0x400,  100]; [0x1000, 200]; [0x6000, 400]; [0x2000, 300]}

• Feed each item of the list as a CCB to the DAX

➢ Max. ccbs per ccb_command (or task) are 15 and Max. condurrent
ccb_commands are 64

• Kernel memset() functionality: should also work on non-contiguous 
memory (assume no huge pages)



Hybrid DAX memset (2)
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• Effectively distribute the scatter-gather list across all the 8 DAX units --
balancing load across DAX units

Scatter-gather list:
[Address, length]

{ 
R0: [0x100,   200]
R1: [0x400,   100]
R2: [0x1000, 200]
R3: [0x6000, 400]
R4: [0x2000, 300]

}

Bin-packing Algorithm:
number of bins = 2
max capacity = 1200/2 = 600

Bin-0  R0 + R1 + R2 + R3 (100)
Bin-1  R3 (300) + R4 (300)

[0x100,   200]
[0x400,   100]
[0x1000, 200]
[0x6000, 100]

[0x6100, 300] 
[0x2000, 300] 

Bin-0 Bin-1

ccb command ccb command

DAX DAX

6.5x speedup for 32 MB size
- Default memset:         6504 usec
- Hybrid DAX memset : 1008 usec



Optimizing Hybrid DAX memset (1)
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• Derive scatter-gather list in two stages

➢ Process half of the memory and build the scatter-gather list (then derive bins)

➢ Feed the bins (ccb_commands) to DAX units

➢ Use CPU to process second half of the memory while DAX is processing the 
ccb_commands of  the first half of memory

• The overhead (va_to_pa) of generating scatter-gather list is 402 usec
(for 32 MB)

Speedup: 6.5x → 7.9x
- Default memset :  6504 usec
- DAX MEMSET              :  1008 usec
- DAX MEMSET (opt-1) :    821 usec



Optimizing Hybrid DAX memset (2)
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• Fill 1/8th of memory region using CPU ( while DAX is processing 7/8th ) 

Speedup: 6.5x → 8.7x
- Default memset()                        :  6504 usec
- Hybrid DAX memset()              :  1008 usec
- Hybrid DAX memset() (opt-1)               :   821 usec
- Hybrid DAX memset() (opt-1 + opt-2)   :   746 usec

• Achieves 9x speedup in zeroing 32MB memory



Case Studies
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• Database SGA Preparation Times (Startup Times)

➢ improves up to 5x  (256GB SGA, with 8MB pages)

• Java JVM GC Latency

➢ improves by up to 4.0x  (provided ioctl() interface for applications)



Limitations
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• Only effective for sizes > 256KB as the DAX setup takes ~15 usec

• Contention for DAX devices when the load is heavy?



Conclusions
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• Demonstrates the potential benefits of utilizing T7 coprocessors
➢ Speeds up the creation of huge pages by 11.0x

➢ Java JVM GC latencies are improved by up to 4.0x



This Work

• Exploits T7 and its co-processors (DAX) to speed up the creation of 
huge pages by up to 11x → improves database startup time up to 6x

• Presents an enhanced memset() that uses T7 co-processors →
improves JVM Garbage Collector latencies by 4x
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On a SPARC T7-1 running Oracle Linux (2.6.39)


