
An Implementation of Fast memset()
Using Hardware Accelerators

Runtime and Operating Systems for Supercomputers Workshop
June 12 2018

Kishore Pusukuri
NetApp Inc

Rob Gardner
Oracle Inc

Jared Smolens
Arm Inc

Multicore Systems & Big-memory Applications

• Multicore systems with huge caches and many cores are ubiquitous

➢ e.g., SPARC T7-1: 32 cores (256 vCPUs), 64MB L3 cache, and 512GB RAM

➢ Maximizes performance of emerging big-memory workloads (databases,
graph analytics, key-value stores, and HPC workloads)

• Big-memory applications

➢ Require many virtual-to-physical address translations in page tables and TLBs

➢ e.g., consumes ~51% of execution cycles just on TLB misses [ISCA’13]

2

[ISCA’13] A. Basu et al., Efficient Virtual Memory for Big Memory Servers. In Proceedings of ISCA, 2013.

Huge Pages

• Modern hardware and OS introduced support for huge pages

➢ e.g., Linux (kernel 2.6.39) on T7 supports 8MB, 2GB, and 16GB (default 8KB)

➢ Improves performance and system utilization by reducing TLB miss rate

• Creating a huge page is an expensive operation

➢ Need to zero the page through kernel memset()

➢ e.g., while creating a 2GB page takes 322 msec, zeroing it takes 320 msec

➢ Zeroed during kernel initialization (booting) and whenever application requests

➢ Big-memory applications need 100s of huge pages → zeroing operation
impacts kernel initialization times (application startup times/serviceability)

3

This Work

• Exploits T7 and its co-processors (DAX) to speed up the creation of huge
pages by up to 11x → improves database startup time up to 6x

• Presents an enhanced memset() that uses T7 co-processors → improves
JVM Garbage Collector latencies by 4x

4

On a SPARC T7-1 running Oracle Linux (2.6.39)

Outline

5

Background

DAX memset

Hybrid DAX memset

Case Studies

1

2

3

4

Kernel memset()

6

80 Million Times

• 99.9% calls are for zeroing

During kernel initialization

Zeroing Huge Pages

7

• clear_huge_page() takes 320 msecs to zero a 2GB huge page

void clear_huge_page(struct page *page,
unsigned long addr,
unsigned int pages_per_huge_page
)

{
...
for (i = 0; i < pages_per_huge_page; i++) {

cond_resched();

// calls kernel memset()
clear_user_highpage(page + i, addr + i * PAGE_SIZE);

}
}

Improving clear_huge_page()

8

• Kernel Threads

• Work Queues (a pool of worker threads)

Technique 8MB page 2GB page

Kernel Threads 2.0x 4.9x

Work Queues 4.0x 5.0x

• Multithreaded kernel memset()

➢ Complexity of using multiple kernel threads? (Software Engineering)

➢ Spawning multiple kernel threads on a loaded system? (Performance)

SPARC T7 & DAX (1)

9

• T7 processor has 8 co-processor units (DAX)

• Data is directly read from and written to the memory space

• Multiple tasks (or commands) can be simultaneously submitted and
hypervisor controls queuing and scheduling

• DAX calls are asynchronous (mwait instruction can be used to monitor
the status → facilitates heterogeneous computing)

SPARC T7 & DAX (2)

10

• How to request DAX?

➢ Fill in a ccb (coprocessor control block) with the operation to be done, pointers
to various memory regions, sizes, etc.

➢ Call hypervisor API: hypervisor distributes ccb commands (tasks or DAX
requests) across DAX units

• Only works on contiguous memory -- page boundaries cannot be
crossed by a single command (task)

• Max. ccb blocks per ccb_command (or DAX request) are 15

• Max. concurrent ccb_commands are 64

Outline

11

SPARC M7 DAX

DAX memset

Hybrid DAX memset

Case Studies

1

2

3

4

DAX memset()

12

• Assumes contiguous memory (effective for huge pages)

• As memset(address, fill_value, size), where [address..address+size]
must reside on one page

/* fill coprocessor control block (ccb) */
ccb_fill_t ccb;
….
ccb.tl.hdr.opcode = CCB_MSG_OPCODE_FILL;
ccb.ctl.hdr.at_dst = CCB_AT_VA;
ccb.imm_op = fill_value;
ccb.ctl.size = size;
...

/* ccb_submit to DAX */
hypercall(completion_area, &ccb, …);
…..
mwait()
....

DAX memset() (cont…)

13

CPU Hypervisor
Fill CCBs & Hypercall

mwait D
A
X

D
A
X

D
A
X

D
A
X

D
A
X

D
A
X

D
A
X

D
A
X

2GB huge page (contiguous memory)

.. .. CCB submits.. ..

.. .. Fill the memory with zeros

Creating 2GB:
320 msec→ 31 msec,
10x speedup

DAX memset() (cont…)

14

CPU Hypervisor
Fill CCBs & Hypercall

mwait D
A
X

D
A
X

D
A
X

D
A
X

D
A
X

D
A
X

D
A
X

D
A
X

2GB huge page (contiguous memory)

.. .. CCB Submits

.. .. Fill the memory with zeros

1/1/16

Fill 128 MB

Heterogeneous computing

Creating 2GB:
320 msec→ 29 msec,
11x speedup

Creating 8MB:
8x speedup

DAX memset() vs Multithreaded Techniques

15

Technique 8MB page 2GB page

Kernel Threads 2.0x 4.9x

Work Queues 4.0x 5.0x

DAX 8.0x 11.0x

Outline

16

SPARC M7 DAX

DAX memset()

Hybrid DAX memset()

Case Studies

1

2

3

4

Hybrid DAX memset (1)

17

• Identify the discontinuities in physical memory corresponding to the
entire virtual buffer – need to do a page table lookup for each page

• Derive a scatter-gather list: a list of contiguous memory chunks (starting
address of the memory region and its length)

➢ e.g., { [0x100, 200]; [0x400, 100]; [0x1000, 200]; [0x6000, 400]; [0x2000, 300]}

• Feed each item of the list as a CCB to the DAX

➢ Max. ccbs per ccb_command (or task) are 15 and Max. condurrent
ccb_commands are 64

• Kernel memset() functionality: should also work on non-contiguous
memory (assume no huge pages)

Hybrid DAX memset (2)

18

• Effectively distribute the scatter-gather list across all the 8 DAX units --
balancing load across DAX units

Scatter-gather list:
[Address, length]

{
R0: [0x100, 200]
R1: [0x400, 100]
R2: [0x1000, 200]
R3: [0x6000, 400]
R4: [0x2000, 300]

}

Bin-packing Algorithm:
number of bins = 2
max capacity = 1200/2 = 600

Bin-0  R0 + R1 + R2 + R3 (100)
Bin-1  R3 (300) + R4 (300)

[0x100, 200]
[0x400, 100]
[0x1000, 200]
[0x6000, 100]

[0x6100, 300]
[0x2000, 300]

Bin-0 Bin-1

ccb command ccb command

DAX DAX

6.5x speedup for 32 MB size
- Default memset: 6504 usec
- Hybrid DAX memset : 1008 usec

Optimizing Hybrid DAX memset (1)

19

• Derive scatter-gather list in two stages

➢ Process half of the memory and build the scatter-gather list (then derive bins)

➢ Feed the bins (ccb_commands) to DAX units

➢ Use CPU to process second half of the memory while DAX is processing the
ccb_commands of the first half of memory

• The overhead (va_to_pa) of generating scatter-gather list is 402 usec
(for 32 MB)

Speedup: 6.5x → 7.9x
- Default memset : 6504 usec
- DAX MEMSET : 1008 usec
- DAX MEMSET (opt-1) : 821 usec

Optimizing Hybrid DAX memset (2)

20

• Fill 1/8th of memory region using CPU (while DAX is processing 7/8th)

Speedup: 6.5x → 8.7x
- Default memset() : 6504 usec
- Hybrid DAX memset() : 1008 usec
- Hybrid DAX memset() (opt-1) : 821 usec
- Hybrid DAX memset() (opt-1 + opt-2) : 746 usec

• Achieves 9x speedup in zeroing 32MB memory

Case Studies

21

• Database SGA Preparation Times (Startup Times)

➢ improves up to 5x (256GB SGA, with 8MB pages)

• Java JVM GC Latency

➢ improves by up to 4.0x (provided ioctl() interface for applications)

Limitations

22

• Only effective for sizes > 256KB as the DAX setup takes ~15 usec

• Contention for DAX devices when the load is heavy?

Conclusions

23

• Demonstrates the potential benefits of utilizing T7 coprocessors
➢ Speeds up the creation of huge pages by 11.0x

➢ Java JVM GC latencies are improved by up to 4.0x

This Work

• Exploits T7 and its co-processors (DAX) to speed up the creation of
huge pages by up to 11x → improves database startup time up to 6x

• Presents an enhanced memset() that uses T7 co-processors →
improves JVM Garbage Collector latencies by 4x

24

On a SPARC T7-1 running Oracle Linux (2.6.39)

