
Is the Heap Manager Important to 

Many Cores?

Ye Liu, Shinpei Kato, Masato Edahiro



Outline

• Background

– Overview of the heap manager

– Why do we focus on the heap manager on many cores?

– Experimental platforms

• Heap Manager Design

– Evaluated heap managers

• Performance Evaluation

• Concluding Remarks

• Future Work



Outline

• Background

– Overview of the heap manager

– Why do we focus on the heap manager on many cores?

– Experimental platforms

• Heap Manager Design

– Evaluated heap managers

• Performance Evaluation

• Concluding Remarks

• Future Work



Overview of the heap manager

• Main items related to our work

– Explicit function invocations (i.e., malloc() and free()) are used by applications to 

request memory allocation/deallocation operations from/to the heap manager

– System calls (i.e., mmap() and munmap()) are invoked by the heap manager to request 

memory blocks from/to the OS (operating system) whenever necessary

– Applications expect to allocate/deallocate the memory blocks from/to the heap manager 

as quickly as possible

– The allocation/deallocation operations from/to the heap manager have the chance to be 

on the critical path of the application execution

– The influence from the heap manager on the program performance is expected to be 

serious when threads on many cores concurrently allocate/deallocate memory blocks 

(with various sizes), especially using a lock-based heap manager

– More importantly, the influence from the heap manager might be associated with the 

memory management of the OS and the cache system of the tiled many-core processors 

(i.e., KNL and the TILE-Gx72 processor)



Outline

• Background

– Overview of the heap manager

– Why do we focus on the heap manager on many cores?

– Experimental platforms

• Heap Manager Design

– Evaluated heap managers

• Performance Evaluation

• Concluding Remarks

• Future Work



Why do we focus on the heap manager on many cores?

• Solving the scalability problem on many cores is the main topic of our 

research work

– It has been proposed that removing the bottleneck from the OS is able to improve the 

program performance

• i.e., An Analysis of Linux Scalability to Many Cores

– It has been proposed that revising the application itself is able to improve the 

application-level parallelism

• i.e., Deconstructing the Overhead in Parallel Applications

– In addition to the OS and application itself, we observed that the program performance 

could be improved when a scalable heap manager was linked on many cores (i.e., KNL 

and the TILE-Gx72 processor)

– Focusing on the heap manager is able to help us further solve the scalability problem on 

many cores



Outline

• Background

– Overview of the heap manager

– Why do we focus on the heap manager on many cores?

– Experimental platforms

• Heap Manager Design

– Evaluated heap managers

• Performance Evaluation

• Concluding Remarks

• Future Work



Experimental platforms

• Tiled many-core processors (KNL and the TILE-Gx72 processor)

– Shared-memory system

– Multiple on-chip memory controllers

– Processing cores are integrated onto a single chip

– Processing cores are interconnected via on-chip mesh-based networks

– The (virtual) last level cache is shared by processing cores

(a) Overview of KNL                                                       (b) Overview of the TILE-Gx72 processor

Chip
On-chip mesh-

based networks

Memory 

controller
Tile

Chip
On-chip mesh-based 

networks

Tile

                     

Memory 

controller
MCDRAM



Outline

• Background

– Overview of the heap manager

– Why do we focus on the heap manager on many cores?

– Experimental platforms

• Heap Manager Design

– Evaluated heap managers

• Performance Evaluation

• Concluding Remarks

• Future Work



Evaluated heap managers

• Ptmalloc

– The default heap manager from the GNU C Library on the Linux system

– The lock is used to protect the data structure named arena

– Threads must acquire the lock before allocating/deallocating the memory block (with 

various sizes) from/to the arena

– The lock on the arena is the main bottleneck of Ptmalloc

• Hoard

– A scalable heap manager

– It consists of a global heap and per-processor heaps

– Superblocks are removed from/to the global heap when the per-processor heap is 

full/empty based on the design criteria

– The lock on the global heap is the potential bottleneck of Hoard



Evaluated heap managers

• Jemalloc

– A scalable heap manager

– Small memory blocks are allocated/deallocated from/to the data structure named thread 

cache without locking

– The lock is used to protect the data structure named arena when huge memory blocks are 

needed

– Thread cache of Jemalloc is beneficial to applications with numerous non-huge memory 

allocation/deallocation operations

• Overview of the evaluated heap managers

– Drawback

• They are lock-based heap managers 

– Advantage

• The evaluated heap managers can be used on both KNL and the TILE-Gx72 processor without considering the 

limitation of the atomic operations



Outline

• Background

– Overview of the heap manager

– Why do we focus on the heap manager on many cores?

– Experimental platforms

• Heap Manager Design

– Evaluated heap managers

• Performance Evaluation

• Concluding Remarks

• Future Work



Performance Evaluation

• Overview

– Applications are from the PARSEC benchmark suite

– The evaluated heap managers (Ptmalloc, Hoard and Jemalloc) were linked to run the 

application respectively

Table: Whether or not the performance variation appears when the heap manager is altered

Program KNL The TILE-Gx72 processor

blackscholes ✘ ✘

bodytrack ✔ ✘

dedup ✔ ✔

facesim ✔ ✘

fluidanimate ✔ ✘

swaptions ✔ ✔



Performance Evaluation

• dedup

– A pipeline application

– It consists of five stages, of which the intermediate three stages are parallel separately

– X-axis represents the thread count for the parallel phase

(a) Performance evaluation on KNL                                                  (b) Performance evaluation on the TILE-Gx72 processor



Performance Evaluation

• swaptions

– A data-parallel application

(a) Performance evaluation on KNL                                                  (b) Performance evaluation on the TILE-Gx72 processor



Performance Evaluation

• Other data-parallel applications on KNL

– bodytrack (upper right)

– facesim (lower left)

– fluidanimate (lower right)

– None of the evaluated heap managers works

best for these applications on KNL



Outline

• Background

– Overview of the heap manager

– Why do we focus on the heap manager on many cores?

– Experimental platforms

• Heap Manager Design

– Evaluated heap managers

• Performance Evaluation

• Concluding Remarks

• Future Work



Concluding Remarks

• Heap manager should be paid attention to as well when analyzing the 

scalability problem on many cores

– The performance improvement can be acquired when Jemalloc/Hoard is linked to run the 

pipeline application (dedup)

– The performance degradation can be observed when Hoard is linked to run the data-

parallel application (swaptions)

• The analysis on the influence from the heap manager should be associated 

with the memory request patterns of the application

– It is not easy to analyze how the program performance gets affected by the heap manager 

when only focusing on the heap manager itself

• The influence from the heap manager is closely related to the experimental 

platform

– The performance variation does not appear on the TILE-Gx72 processor but exists on 

KNL when running bodytrack, facesim and fluidanimate respectively 



Outline

• Background

– Overview of the heap manager

– Why do we focus on the heap manager on many cores?

– Experimental platforms

• Heap Manager Design

– Evaluated heap managers

• Performance Evaluation

• Concluding Remarks

• Future Work



Future Work

• Lock-free (synchronization-free) heap managers will be added to evaluate 

the program performance

– i.e., Streamflow, SFMalloc

• Memory request patterns from the application will be analyzed in order to 

fully understand how the program performance is influenced by the heap 

manager

• More multithreaded applications designed for the shared-memory system 

will be added to further evaluate the performance variation caused by the 

heap manager

• The influence from the memory management of the OS and the cache 

system of the tiled many-core processors, which can be associated with the 

heap manager, will be further analyzed



Thanks for your listening! 

&

Any questions?


