
Why do we need another
programing model ?

B. Gerofi, M. Takagi, Y. Ishikawa (RIKEN)
J. Dayal (Intel), P. Balaji (ANL)

 1

Min Si
ANL

Atsushi Hori
Riken

ROSS 2018 at Tempe, AZ

HPDC’18 Main Conference

 2

Thursday, 14 June

at Memorial Union Ventana B&C

10:00 - 10:30 Break (Memorial Union Ventana B&C)

10:30 - 11:30 Session 1 - Operating Systems (Memorial Union Ventana B&C)

PicoDriver: Fast-path Device Drivers for Multi-kernel Operating Systems
Balazs Gerofi (RIKEN); Aram Santogidis (CERN); Dominique Martinet (CEA); Yutaka
Ishikawa (RIKEN)

Hard Real-time Scheduling for Parallel Run-time Systems
Peter Dinda, Xiaoyang Wang, Jinghang Wang, Christopher Beauchene, Conor Hetland
(Northwestern
University)

11:30 - 13:30 Lunch (Memorial Union Ventana B&C)

13:30 - 15:00 Session 2 - Fault Tolerance - I (Memorial Union Ventana B&C)

ABFR: Convenient Management of Latent Error Resilience using Application
Knowledge
Aiman Fang (The University of Chicago); Andrew A. Chien (The University of Chicago
and Argonne
National Laboratory)

Desh: Deep Learning for System Health Prediction of Lead Times to Failure in
HPC
Anwesha Das, Frank Mueller (North Carolina State University); Charles Siegel (Cray
Inc.);
Abhinav Vishnu (Advanced Micro Devices, Inc.)

Improving Performance of Iterative Methods by Lossy Checkpointing
Dingwen Tao (University of California, Riverside); Sheng Di (Argonne National
Laboratory); Xin Liang,
Zizhong Chen (University of California, Riverside); Franck Cappello (Argonne National
Laboratory)

15:00 - 15:30 Break (Memorial Union Ventana B&C)

15:30 - 17:00 Session 3 - Massively Multicore Systems (Memorial Union Ventana B&C)

Efficient Sparse-Matrix Multi-Vector Product on GPUs
Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Jinsung Kim,
Süreyya Emre Kurt, Israt Nisa, Shivani Sabhlok (The Ohio State University); Ümit V.
Çatalyürek (Georgia Institute of Technology); Srinivasan Parthasarathy, P. Sadayappan
(The Ohio State University)

CommAnalyzer: Automated Estimation of Communication Cost and Scalability
on HPC Clusters from Sequential Code
Ahmed E. Helal, Changhee Jung, Wu-chun Feng, Yasser Y. Hanafy (Virginia Tech)

A High-Performance Connected Components Implementation for GPUs
Jayadharini Jaiganesh, Martin Burtscher (Texas State University)

18:00 - 21:00 Poster Session and Reception (Memorial Union Ventana B&C)

See the Poster Session page for the list of posters

07:30 - 08:45 Registration, Breakfast & Announcements (Memorial Union Ventana B&C)

08:45 - 09:45 Keynote (Memorial Union Ventana B&C)

Cambrian Explosion of Computing and Big Data in the Post-Moore Era
Satoshi Matsuoka (Tokyo Institute of Technology)

09:45 - 10:00 Daily Pitches

at Memorial Union Ventana B&C

10:00 - 10:30 Break (Memorial Union Ventana B&C)

10:30 - 12:00 Session 4 - Runtime Systems (Memorial Union Ventana B&C)

PShifter: Feedback-based Dynamic Power Shifting within HPC Jobs for
Performance
Neha Gholkar, Frank Mueller (North Carolina State University); Barry Rountree,
Aniruddha Prakash Marathe (Lawrence Livermore National Laboratory)

ADAPT: An Event-based Adaptive Collective Communication Framework
Xi Luo (University of Tennessee, Knoxville); Wu Wei (Los Alamos National Laboratory);
George Bosilca, Thananon Patinyasakdikul, Jack Dongarra (University of Tennessee,
Knoxville); Linnan Wang (Brown University)

Process-in-Process: Techniques for Practical Address-Space Sharing
Atsushi Hori (RIKEN); Min Si (ANL); Balazs Gerofi, Masamichi Takagi (RIKEN); Jai
Dayal (Intel);
Pavan Balaji (ANL); Yutaka Ishikawa (RIKEN)

12:00 - 13:30 Lunch (Memorial Union Ventana B&C)

13:30 - 15:00 Session 5 - Fault Tolerance - II (Memorial Union Ventana B&C)

Thread-Local Concurrency: A Technique to Handle Data Race Detection at
Programming Model Abstraction
Joachim Protze (RWTH Aachen University); Martin Schulz (TU Munich); Dong H. Ahn
(Lawrence
Livermore National Laboratory); Matthias S. Müller (RWTH Aachen University)

LADR: Low-cost Application-level Detector for Reducing Silent Output
Corruptions
Chao Chen, Greg Eisenhauer (Georgia Institute of Technology); Matthew Wolf (Oak
Ridge National
Lab); Santosh Pande (Georgia Institute of Technology)

Profiling Distributed Systems in Lightweight Virtualized Environments with
Logs and Resource Metrics
Aidi Pi, Wei Chen, Xiaobo Zhou (University of Colorado at Colorado Springs); Mike Ji
(Hillstone Networks Inc., Santa Clara, USA)

Thursday, 14 June

ROSS 2018 at Tempe, AZ

Outline
• Multi-process and Multi-thread

• Historical background

• Motivation
• New Execution Model

• Process-in-Process (PiP)
• Showing some numbers

 3

ROSS 2018 at Tempe, AZ

Multi-Process
• Beginning

• Multi-programming
• Running “independent” programs at the same

time
• Multi-tasking and Time-sharing

• Utilizing CPU idle time
• Nowadays (in HPC)

• Running “familiar” programs
• No need of utilizing idle CPU time (busy-wait)
• Frequent communication among processes

• IPC (e.g., pipes, sockets, …) is too heavy
• Shared memory is better, but …

 4

ROSS 2018 at Tempe, AZ

Multi-Thread
• Beginning

• Interacting Oversubscribed Execution Entities
• “Light-weight” process

• Fast creation
• Not loading and linking a program,  

but creating new context (incl. stack)
• Easy to exchange information

• Nowadays
• Its creation is still heavy

• not to create threads on-demand
• No oversubscription
• Shared variables must be protected

 5

ROSS 2018 at Tempe, AZ

My Experience
• A decade ago,  

developing low-level intra-node communication
library for MPI

• By using shared mmap
• Not easy at all !!

• Setup part is NOT easy
• Communication part is easy

• Wait, something is wrong
• A process cannot access the other process
• Processes access the same PHYSICAL memory !!
• It is the OS to create the inter-process barrier

 6

ROSS 2018 at Tempe, AZ

And Many-Core
• More parallelism in a node

• from 100 to 102 (or more)

• More interaction between processes or threads
• Multi-Process: Hard to communicate
• Multi-Thread: Shared variables must be protected

• We need something new (if you are not happy)
• Easy to communicate
• No shared variables

 7

ROSS 2018 at Tempe, AZ

Shared Memory and XPMEM
• “Hole in the wall” to go through the barrier

• Need of 2 copies to pass data
• Pointers in the shared memory are useless

• Setup (creation) cost
• Need of page table entries to map
• Coherency (page fault) overhead

 8

Page!
Table

Page!
Table

Process 0 Process 1

Coherent
Sub!
PT

Sub!
PT

Shared Physical Memory

ROSS 2018 at Tempe, AZ

Let’s Break the Wall !
• Not making a tiny hole in the wall,  

but removing the whole wall !!!

• Removing the walls between processes
• Keep variables private as in the same way of multi-

process
➡ Easy to exchange data as easy as multi-thread

because there is no wall
AND

• Build another fence between threads
• Make variables private to each thread
➡No need of protection on shared variables

 9

ROSS 2018 at Tempe, AZ

3rd Execution Model

 10

Address Space

Isolated Shared

Variables

Privatized Multi-Process
(MPI)

3rd Exec.
Model

Shared N/A Multi-Thread
(OpenMP)

ROSS 2018 at Tempe, AZ

Implementation
• This idea is not new

• Pack processes into one  
virtual address space
• SMARTMAP (SNL)
• PVAS (Riken)

• Threads pretending processes
• MPC (CEA)

• Need of special compiler to privatize variables,  
converting static variables to TLS variables

 11

SMARTMAP
and PVAS

Process 0
Process 1

:
Process n-1

Kernel

ROSS 2018 at Tempe, AZ

Make it more practical and portable

• No need of virtual address space partitioning
• Only OS can partition virtual address space

• Process-in-Process (PiP)
• User-level library
• Implementation

• dlmopen() to privatize variables
• create execution entities (processes or threads)

to share the same virtual address space
• i.e., clone() or pthread_create()

• PiP programs must be PIE so that dlmopen() can
load programs in different locations

 12

ROSS 2018 at Tempe, AZ

/proc/*/maps example of PiP

 13

555555554000-555555556000 r-xp ... /PIP/test/basic
555555755000-555555756000 r--p ... /PIP/test/basic
555555756000-555555757000 rw-p ... /PIP/test/basic
555555757000-555555778000 rw-p ... [heap]
7fffe8000000-7fffe8021000 rw-p ...
7fffe8021000-7fffec000000 ---p ...
7ffff0000000-7ffff0021000 rw-p ...
7ffff0021000-7ffff4000000 ---p ...
7ffff4b24000-7ffff4c24000 rw-p ...
7ffff4c24000-7ffff4c27000 r-xp ... /PIP/lib/libpip.so
7ffff4c27000-7ffff4e26000 ---p ... /PIP/lib/libpip.so
7ffff4e26000-7ffff4e27000 r--p ... /PIP/lib/libpip.so
7ffff4e27000-7ffff4e28000 rw-p ... /PIP/lib/libpip.so
7ffff4e28000-7ffff4e2a000 r-xp ... /PIP/test/basic
7ffff4e2a000-7ffff5029000 ---p ... /PIP/test/basic
7ffff5029000-7ffff502a000 r--p ... /PIP/test/basic
7ffff502a000-7ffff502b000 rw-p ... /PIP/test/basic
7ffff502b000-7ffff502e000 r-xp ... /PIP/lib/libpip.so
7ffff502e000-7ffff522d000 ---p ... /PIP/lib/libpip.so
7ffff522d000-7ffff522e000 r--p ... /PIP/lib/libpip.so
7ffff522e000-7ffff522f000 rw-p ... /PIP/lib/libpip.so
7ffff522f000-7ffff5231000 r-xp ... /PIP/test/basic
7ffff5231000-7ffff5430000 ---p ... /PIP/test/basic
7ffff5430000-7ffff5431000 r--p ... /PIP/test/basic
7ffff5431000-7ffff5432000 rw-p ... /PIP/test/basic
...
7ffff5a52000-7ffff5a56000 rw-p ...
...
7ffff5c6e000-7ffff5c72000 rw-p ...
7ffff5c72000-7ffff5e28000 r-xp ... /lib64/libc.so
7ffff5e28000-7ffff6028000 ---p ... /lib64/libc.so
7ffff6028000-7ffff602c000 r--p ... /lib64/libc.so
7ffff602c000-7ffff602e000 rw-p ... /lib64/libc.so

7ffff602e000-7ffff6033000 rw-p ...
7ffff6033000-7ffff61e9000 r-xp ... /lib64/libc.so
7ffff61e9000-7ffff63e9000 ---p ... /lib64/libc.so
7ffff63e9000-7ffff63ed000 r--p ... /lib64/libc.so
7ffff63ed000-7ffff63ef000 rw-p ... /lib64/libc.so
7ffff63ef000-7ffff63f4000 rw-p ...
7ffff63f4000-7ffff63f5000 ---p ...
7ffff63f5000-7ffff6bf5000 rw-p ... [stack:10641]
7ffff6bf5000-7ffff6bf6000 ---p ...
7ffff6bf6000-7ffff73f6000 rw-p ... [stack:10640]
7ffff73f6000-7ffff75ac000 r-xp ... /lib64/libc.so
7ffff75ac000-7ffff77ac000 ---p ... /lib64/libc.so
7ffff77ac000-7ffff77b0000 r--p ... /lib64/libc.so
7ffff77b0000-7ffff77b2000 rw-p ... /lib64/libc.so
7ffff77b2000-7ffff77b7000 rw-p ...
...
7ffff79cf000-7ffff79d3000 rw-p ...
7ffff79d3000-7ffff79d6000 r-xp ... /PIP/lib/libpip.so
7ffff79d6000-7ffff7bd5000 ---p ... /PIP/lib/libpip.so
7ffff7bd5000-7ffff7bd6000 r--p ... /PIP/lib/libpip.so
7ffff7bd6000-7ffff7bd7000 rw-p ... /PIP/lib/libpip.so
7ffff7ddb000-7ffff7dfc000 r-xp ... /lib64/ld.so
7ffff7edc000-7ffff7fe0000 rw-p ...
7ffff7ff7000-7ffff7ffa000 rw-p ...
7ffff7ffa000-7ffff7ffc000 r-xp ... [vdso]
7ffff7ffc000-7ffff7ffd000 r--p ... /lib64/ld.so
7ffff7ffd000-7ffff7ffe000 rw-p ... /lib64/ld.so
7ffff7ffe000-7ffff7fff000 rw-p ...
7ffffffde000-7ffffffff000 rw-p ... [stack]
ffffffffff600000-ffffffffff601000 r-xp ... [vsyscall]

Program

Glibc

ROSS 2018 at Tempe, AZ

3rd Execution Model

 14

Address Space

Isolated Shared

Variables

Privatized Multi-Process
(MPI)

3rd Exec.
Model

Shared N/A Multi-Thread
(OpenMP)

ROSS 2018 at Tempe, AZ

• Do PiP tasks and the root share the same page table ?
• Evaluation of switching two tasks using futex

Sharing a Page Table

 15

B. Sigoure. How long does it take to make a context switch?, November 2010.
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 10 100 1000 10000

Co
nt

ex
t s

wi
tc

h
ov

er
he

ad
 [n

s]

Wroking set size [KiB]

PTHREADPIPFORK

1,000

2,000

200 1000 2000

Conference’17, July 2017, Washington, DC, USA

Table 1: Number of Page Table Entries

Number of Page Table Entries
Pthread M + D + S × (N + 1)
PiP M + (S + D) × (N + 1)

Fork and XPMEM (M + D + S) × (N + 1)
S is the number of PT entries to access the stack segment
D is the number of PT entries required to map DSOs
N is the number of child tasks

entries also for the shared memory region. Assuming that M is
the number of PT entries required to access the entire mmap()ed
region, Table 1 summarizes the required number of PT entries for
each case. In this figure, the total size of PTs increases linearly over
the number of children because the size of the shared memory seg-
ment is constant, 128 MiB. As described in Section 2.1.5, the size
must be proportional to the number of cores, and the total size of
PTs grows exponentially.

0
2
4
6
8

10
12
14
16
18

0 10 20 30 40 50 60

To
ta

l P
ag

e
Ta

bl
e

Si
ze

 [M
iB

]

Tasks - 128 MiB Shared

Pthread

PiP

Fork

XPMEM

Figure 8: Total Page Table Size

Figure 8 shows the result of this microbenchmark, comparing
the total PT sizes for PiP tasks, Pthreads and regular processes
over the number of child tasks. Figure 8 clearly demonstrates the
relationship described in Table 1. As seen, regular processes have
close to linear increase in PT memory consumption as the shared
segment requires private mappings in each process. On the other
hand, PiP tasks exhibit scalability similar to Pthreads.

possible OBJECTION: use hugepages instaad !!
While PT sharing is expected behavior of PiP, elimination of

context switches may depend on OS implementation. The follow-
ing experiment verifies that context switches are indeed eliminated
in Linux. Table 2 shows the number of load_cr3 Linux kernel

Table 2: Number of load_cr3 function calls

PIP Pthread Fork
74.1 53.0 794535.4

function calls measured by using systemtap (version 3.0/0.166)
[14]. The load_cr3 function is used for setting the root of a new
PT to the CR3 register of an x86 CPU [24]. When a context switch
takes place, the register is updated to the new PT root. As a re-
sult, the first level cache which is indexed by virtual address and
all TLB entries are invalidated. This implies a certain amount of
overhead due to the context switch [26]. In this evaluation pro-
gram (based on the program in [38]), one child task is created and
there are two futex variables between the root and child running
on the same CPU core. Each task waits on a futex and unlocks the
other, resulting in frequent context switching. In between the two
futex calls, memcpy()ing 32 KiB bytes is carried out. Each child task
repeats this 1,000 times. Pthreads and PiP tasks share the same PT
between the root and PiP tasks, while regular processes do not.
As expected, the number of context switches in case of PiP and
Pthread are insignificant compared to that of regular processes.

PI
P-

lo
ad

PI
P-

st
or

e

Th
re

ad
-lo

ad

Th
re

ad
-s

to
re

Fo
rk

-lo
ad

Fo
rk

-s
to

re

0E+0

1E+6

2E+6

3E+6

4E+6

5E+6

6E+6

dT

LB
 M

is
s

Ev
en

ts

Figure 9: dTLB Miss

Figure 9 shows the numbers of dTLB misses measured by the
perf tool (version 3.10.0-327.36.3.el7.x86_64.debug). The same bench-
mark program as described above was used and 120 samples are
plotted. Since there is a wide spread in the number of TLB misses,
the graph is drawn as a scattered graph. The key observation is
that when there is no context witching the number of TLB misses
remains low. Again, the figure successfully demonstrates that from
a TLBmiss perspective PiP behaves similarly to Pthreads, eliminat-
ing the cost of context switches that regular processes otherwise
impose.

7.2.1 XPMEMvs. POSIX shmem vs. PiP. XPMEMversion is 2.6.4.

Conference’17, July 2017, Washington, DC, USA

Table 1: Number of Page Table Entries

Number of Page Table Entries
Pthread M + D + S × (N + 1)
PiP M + (S + D) × (N + 1)

Fork and XPMEM (M + D + S) × (N + 1)
S is the number of PT entries to access the stack segment
D is the number of PT entries required to map DSOs
N is the number of child tasks

entries also for the shared memory region. Assuming that M is
the number of PT entries required to access the entire mmap()ed
region, Table 1 summarizes the required number of PT entries for
each case. In this figure, the total size of PTs increases linearly over
the number of children because the size of the shared memory seg-
ment is constant, 128 MiB. As described in Section 2.1.5, the size
must be proportional to the number of cores, and the total size of
PTs grows exponentially.

0
2
4
6
8

10
12
14
16
18

0 10 20 30 40 50 60

To
ta

l P
ag

e
Ta

bl
e

Si
ze

 [M
iB

]

Tasks - 128 MiB Shared

Pthread

PiP

Fork

XPMEM

Figure 8: Total Page Table Size

Figure 8 shows the result of this microbenchmark, comparing
the total PT sizes for PiP tasks, Pthreads and regular processes
over the number of child tasks. Figure 8 clearly demonstrates the
relationship described in Table 1. As seen, regular processes have
close to linear increase in PT memory consumption as the shared
segment requires private mappings in each process. On the other
hand, PiP tasks exhibit scalability similar to Pthreads.

possible OBJECTION: use hugepages instaad !!
While PT sharing is expected behavior of PiP, elimination of

context switches may depend on OS implementation. The follow-
ing experiment verifies that context switches are indeed eliminated
in Linux. Table 2 shows the number of load_cr3 Linux kernel

Table 2: Number of load_cr3 function calls

PIP Pthread Fork
74.1 53.0 794535.4

function calls measured by using systemtap (version 3.0/0.166)
[14]. The load_cr3 function is used for setting the root of a new
PT to the CR3 register of an x86 CPU [24]. When a context switch
takes place, the register is updated to the new PT root. As a re-
sult, the first level cache which is indexed by virtual address and
all TLB entries are invalidated. This implies a certain amount of
overhead due to the context switch [26]. In this evaluation pro-
gram (based on the program in [38]), one child task is created and
there are two futex variables between the root and child running
on the same CPU core. Each task waits on a futex and unlocks the
other, resulting in frequent context switching. In between the two
futex calls, memcpy()ing 32 KiB bytes is carried out. Each child task
repeats this 1,000 times. Pthreads and PiP tasks share the same PT
between the root and PiP tasks, while regular processes do not.
As expected, the number of context switches in case of PiP and
Pthread are insignificant compared to that of regular processes.

PI
P-

lo
ad

PI
P-

st
or

e

Th
re

ad
-lo

ad

Th
re

ad
-s

to
re

Fo
rk

-lo
ad

Fo
rk

-s
to

re

0E+0

1E+6

2E+6

3E+6

4E+6

5E+6

6E+6

dT

LB
 M

is
s

Ev
en

ts

Figure 9: dTLB Miss

Figure 9 shows the numbers of dTLB misses measured by the
perf tool (version 3.10.0-327.36.3.el7.x86_64.debug). The same bench-
mark program as described above was used and 120 samples are
plotted. Since there is a wide spread in the number of TLB misses,
the graph is drawn as a scattered graph. The key observation is
that when there is no context witching the number of TLB misses
remains low. Again, the figure successfully demonstrates that from
a TLBmiss perspective PiP behaves similarly to Pthreads, eliminat-
ing the cost of context switches that regular processes otherwise
impose.

7.2.1 XPMEMvs. POSIX shmem vs. PiP. XPMEMversion is 2.6.4.

Conference’17, July 2017, Washington, DC, USA

Table 1: Number of Page Table Entries

Number of Page Table Entries
Pthread M + D + S × (N + 1)
PiP M + (S + D) × (N + 1)

Fork and XPMEM (M + D + S) × (N + 1)
S is the number of PT entries to access the stack segment
D is the number of PT entries required to map DSOs
N is the number of child tasks

entries also for the shared memory region. Assuming that M is
the number of PT entries required to access the entire mmap()ed
region, Table 1 summarizes the required number of PT entries for
each case. In this figure, the total size of PTs increases linearly over
the number of children because the size of the shared memory seg-
ment is constant, 128 MiB. As described in Section 2.1.5, the size
must be proportional to the number of cores, and the total size of
PTs grows exponentially.

0
2
4
6
8

10
12
14
16
18

0 10 20 30 40 50 60

To
ta

l P
ag

e
Ta

bl
e

Si
ze

 [M
iB

]

Tasks - 128 MiB Shared

Pthread

PiP

Fork

XPMEM

Figure 8: Total Page Table Size

Figure 8 shows the result of this microbenchmark, comparing
the total PT sizes for PiP tasks, Pthreads and regular processes
over the number of child tasks. Figure 8 clearly demonstrates the
relationship described in Table 1. As seen, regular processes have
close to linear increase in PT memory consumption as the shared
segment requires private mappings in each process. On the other
hand, PiP tasks exhibit scalability similar to Pthreads.

possible OBJECTION: use hugepages instaad !!
While PT sharing is expected behavior of PiP, elimination of

context switches may depend on OS implementation. The follow-
ing experiment verifies that context switches are indeed eliminated
in Linux. Table 2 shows the number of load_cr3 Linux kernel

Table 2: Number of load_cr3 function calls

PIP Pthread Fork
74.1 53.0 794535.4

function calls measured by using systemtap (version 3.0/0.166)
[14]. The load_cr3 function is used for setting the root of a new
PT to the CR3 register of an x86 CPU [24]. When a context switch
takes place, the register is updated to the new PT root. As a re-
sult, the first level cache which is indexed by virtual address and
all TLB entries are invalidated. This implies a certain amount of
overhead due to the context switch [26]. In this evaluation pro-
gram (based on the program in [38]), one child task is created and
there are two futex variables between the root and child running
on the same CPU core. Each task waits on a futex and unlocks the
other, resulting in frequent context switching. In between the two
futex calls, memcpy()ing 32 KiB bytes is carried out. Each child task
repeats this 1,000 times. Pthreads and PiP tasks share the same PT
between the root and PiP tasks, while regular processes do not.
As expected, the number of context switches in case of PiP and
Pthread are insignificant compared to that of regular processes.

PI
P-

lo
ad

PI
P-

st
or

e

Th
re

ad
-lo

ad

Th
re

ad
-s

to
re

Fo
rk

-lo
ad

Fo
rk

-s
to

re

0E+0

1E+6

2E+6

3E+6

4E+6

5E+6

6E+6

dT

LB
 M

is
s

Ev
en

ts

Figure 9: dTLB Miss

Figure 9 shows the numbers of dTLB misses measured by the
perf tool (version 3.10.0-327.36.3.el7.x86_64.debug). The same bench-
mark program as described above was used and 120 samples are
plotted. Since there is a wide spread in the number of TLB misses,
the graph is drawn as a scattered graph. The key observation is
that when there is no context witching the number of TLB misses
remains low. Again, the figure successfully demonstrates that from
a TLBmiss perspective PiP behaves similarly to Pthreads, eliminat-
ing the cost of context switches that regular processes otherwise
impose.

7.2.1 XPMEMvs. POSIX shmem vs. PiP. XPMEMversion is 2.6.4.

1,000 samples

Xeon E5-2650 v2 8×2(×2) 2.6GHz 64 GiB

ROSS 2018 at Tempe, AZ

How PiP works
• Execution Model

• PiP Root Process
• Root can spawn PiP tasks  

in the same virtual address  
space of the root

• PiP Tasks
• spawned by the root

• Execution Mode
• Process mode

• Tasks are created by clone()
• Thread mode

• Tasks are created by pthread_create()
• Variables are privatized though

 16

ROSS 2018 at Tempe, AZ

PiP vs. Shared Memory
• Setup Cost

• Page Table Size
• Number of Page Faults

 17

ROSS 2018 at Tempe, AZ

Setup Cost

 18

xpmem_segid_t xpmem_make(void *vaddr, size_t size,
 int permit_type, void *permit_value) {
 return (xpmem_segid_t) vaddr; }

int xpmem_remove(xpmem_segid_t segid) { return 0;}

xpmem_apid_t xpmem_get(xpmem_segid_t segid,
 int flags, int permit_type,
 void *permit_value) {
 return segid; }

int xpmem_release(xpmem_apid_t apid) { return 0; }

void *xpmem_attach(struct xpmem_addr addr,
size_t size, void *vaddr) {

 return (void*) (addr.apid + addr.offset); }

int xpmem_detach(void *vaddr) { return 0; }

<pip/xpmem.h>Allocating 2 GiB Shared Memory

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa

accesses, and (2) a program follows the multiprocess model where
static variables are intensively used. PiP has no advantage over the
multithread model in the former case, however, the latter can be
dramatically optimized by using PiP with only small code recon-
struction — something no other existing technique can achieve, as
demonstrated in the hybrid MPI+Threads example.

The majority of hybrid MPI+Threads-based applications still
follow the MPI funneled safety to work around the performance
issues in multithreading safety. However, such an approach can no
longer satisfy the network throughput, especially on many-core
architectures where performance highly relies on the concurrence
of a large number of low-frequency cores polling the network. Thus,
an increasing number of applications are being built by using the
multithreading mode [26], and PiP will be the ideal tool to maximize
communication performance.

5 EXPERIMENTAL SETTING
We used four experimental platforms to cover several OS kernels
and CPU architectures in our evaluation, as listed in Tables 2 and 3.
The Linux kernel on the K computer is old, and we gave up trying
to install the patched Glibc. The CPU of the K computer supports
only eight cores, thus PiP without the patched Glibc can still utilize
all CPU cores.

McKernel is a multikernel that runs Linux with a lightweight
kernel side by side on compute nodes [17]. In the experiments
with McKernel on Wallaby, McKernel was con�gured to run on 14
cores out of 16, and the Linux kernel ran on the remaining 2 cores.
Since the current McKernel is unable to handle the clone() �ag
combination described in Section 3.3, the PiP programs ran in the
thread execution mode.

We report the results of each experiment by averaging 10 execu-
tions, unless otherwise stated.

Table 2: Experimental platform hardware information
Name CPU # Cores Clock Memory Network
Wallaby Xeon E5-2650 v2 8⇥2(⇥2) 2.6GHz 64 GiB ConnectX-3
OFP† Xeon Phi 7250 68(⇥4) 1.4GHz 96(+16) GiB Omni-Path
K [44] SPARC64 VIIIfx 8 2.0GHz 16 GiB Tofu

Table 3: Experimental platform software information
Name OS Glibc PiP Exec. Mode(s)
Wallaby Linux (CentOS 7.3) w/ patch process and thread
Wallaby McKernel+CentOS 7.3 w/ patch thread only
OFP† Linux (CentOS 7.2) w/ patch process and thread
K XTCOS w/o patch process and thread

† Oakforest-PACS (OFP) http://jcahpc.jp/eng/ofp_intro.html. The �at mode was
used in the showcase evaluations in Section 7.1 and 7.3 without using MCDRAM
(16GiB). The other evaluations were done with the cache quadrant mode.

6 PIP PERFORMANCE ANALYSIS
We evaluate the characteristics of PiP by using a set of in-house
microbenchmarks.

6.1 Setup Overhead
In this microbenchmark, the root task created and initialized a 2 GiB
shared array with integer elements, and then a child task summed

members of the array, assuming that the root task sent integer
data to the child task via the allocated region. We implemented the
XPMEM based and POSIX shmem based versions. Table 4 shows
the times spent in the XPMEM and POSIX shmem functions. PiP
also provides the XPMEM APIs so that the XPMEM version can be
easily linked to PiP. Most of the XPMEM functions provided by PiP
do almost nothing, and the overhead of each function is only 40–80
clock cycles.

Table 4: Overhead of XPMEM and POSIX shmem functions
on Wallaby/Linux

XPMEM Cycles
xpmem_make() 1,585
xpmem_get() 15,294

xpmem_attach() 2,414
xpmem_detach() 19,183
xpmem_release() 693

POSIX Shmem Cycles
Sender shm_open() 22,294

ftruncate() 4,080
mmap() 5,553
close() 6,017

Receiver shm_open() 13,522
mmap() 16,232
close() 16,746

Note: Measured only once.

6.2 Page Fault Overhead
Figure 5 shows the time series of each access using the same mi-
crobenchmark program used in the preceding subsection. Element
access was stridden with 64 bytes so that each cache block was
accessed only once, to eliminate the cache block e�ect. The left-
hand graphs show spikes with 4KiB page size. The spike heights
of XPMEM are higher than the ones of POSIX shmem, however,
the PiP process mode and PiP thread mode show the lowest spike
heights. With XPMEM and POSIX, a PF happened every time a
new memory page is accessed. The spikes in PiP are the time spent
for the translation lookaside bu�er (TLB) misses. In PiP, the whole
array was touched at the time of initialization by the root task, and
all required PT entries were created then.

10

100

1,000

5,000

Ac
ce

ss
 T

im
e

[C
yc

le
s]

ShmemXPMEM XPMEM
PageSize:4KiB PageSize:2MiB

10

100

500

0 4,096 8,192 12,288 16,384
Array Elements [Byte offset]

PiP:process PiP:thread

0 4,096 8,192 12,288 16,384
Array Elements [Byte offset]

PiP:process PiP:thread

Note: Measured only once. The upper graphs show the time series using POSIX
shmem and XPMEM, and the lower graphs show the time series using PiP. Both
graphs on the left-hand side show spikes with 4 KiB page, and the graphs on the
right-hand side show spikes with 2 MiB HugeTLB.

Figure 5: Time series of array access with 64 bytes stride on
Wallaby/Linux

The right graphs show the same benchmark but using HugeTLB.
POSIX shmem cannot handle the HugeTLB on this Linux kernel.
XPMEM does show huge spikes again on the every 4 KiB page
boundary. We consulted the XPMEM device driver source code

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa

accesses, and (2) a program follows the multiprocess model where
static variables are intensively used. PiP has no advantage over the
multithread model in the former case, however, the latter can be
dramatically optimized by using PiP with only small code recon-
struction — something no other existing technique can achieve, as
demonstrated in the hybrid MPI+Threads example.

The majority of hybrid MPI+Threads-based applications still
follow the MPI funneled safety to work around the performance
issues in multithreading safety. However, such an approach can no
longer satisfy the network throughput, especially on many-core
architectures where performance highly relies on the concurrence
of a large number of low-frequency cores polling the network. Thus,
an increasing number of applications are being built by using the
multithreading mode [26], and PiP will be the ideal tool to maximize
communication performance.

5 EXPERIMENTAL SETTING
We used four experimental platforms to cover several OS kernels
and CPU architectures in our evaluation, as listed in Tables 2 and 3.
The Linux kernel on the K computer is old, and we gave up trying
to install the patched Glibc. The CPU of the K computer supports
only eight cores, thus PiP without the patched Glibc can still utilize
all CPU cores.

McKernel is a multikernel that runs Linux with a lightweight
kernel side by side on compute nodes [17]. In the experiments
with McKernel on Wallaby, McKernel was con�gured to run on 14
cores out of 16, and the Linux kernel ran on the remaining 2 cores.
Since the current McKernel is unable to handle the clone() �ag
combination described in Section 3.3, the PiP programs ran in the
thread execution mode.

We report the results of each experiment by averaging 10 execu-
tions, unless otherwise stated.

Table 2: Experimental platform hardware information
Name CPU # Cores Clock Memory Network
Wallaby Xeon E5-2650 v2 8⇥2(⇥2) 2.6GHz 64 GiB ConnectX-3
OFP† Xeon Phi 7250 68(⇥4) 1.4GHz 96(+16) GiB Omni-Path
K [44] SPARC64 VIIIfx 8 2.0GHz 16 GiB Tofu

Table 3: Experimental platform software information
Name OS Glibc PiP Exec. Mode(s)
Wallaby Linux (CentOS 7.3) w/ patch process and thread
Wallaby McKernel+CentOS 7.3 w/ patch thread only
OFP† Linux (CentOS 7.2) w/ patch process and thread
K XTCOS w/o patch process and thread

† Oakforest-PACS (OFP) http://jcahpc.jp/eng/ofp_intro.html. The �at mode was
used in the showcase evaluations in Section 7.1 and 7.3 without using MCDRAM
(16GiB). The other evaluations were done with the cache quadrant mode.

6 PIP PERFORMANCE ANALYSIS
We evaluate the characteristics of PiP by using a set of in-house
microbenchmarks.

6.1 Setup Overhead
In this microbenchmark, the root task created and initialized a 2 GiB
shared array with integer elements, and then a child task summed

members of the array, assuming that the root task sent integer
data to the child task via the allocated region. We implemented the
XPMEM based and POSIX shmem based versions. Table 4 shows
the times spent in the XPMEM and POSIX shmem functions. PiP
also provides the XPMEM APIs so that the XPMEM version can be
easily linked to PiP. Most of the XPMEM functions provided by PiP
do almost nothing, and the overhead of each function is only 40–80
clock cycles.

Table 4: Overhead of XPMEM and POSIX shmem functions
on Wallaby/Linux

XPMEM Cycles
xpmem_make() 1,585
xpmem_get() 15,294

xpmem_attach() 2,414
xpmem_detach() 19,183
xpmem_release() 693

POSIX Shmem Cycles
Sender shm_open() 22,294

ftruncate() 4,080
mmap() 5,553
close() 6,017

Receiver shm_open() 13,522
mmap() 16,232
close() 16,746

Note: Measured only once.

6.2 Page Fault Overhead
Figure 5 shows the time series of each access using the same mi-
crobenchmark program used in the preceding subsection. Element
access was stridden with 64 bytes so that each cache block was
accessed only once, to eliminate the cache block e�ect. The left-
hand graphs show spikes with 4KiB page size. The spike heights
of XPMEM are higher than the ones of POSIX shmem, however,
the PiP process mode and PiP thread mode show the lowest spike
heights. With XPMEM and POSIX, a PF happened every time a
new memory page is accessed. The spikes in PiP are the time spent
for the translation lookaside bu�er (TLB) misses. In PiP, the whole
array was touched at the time of initialization by the root task, and
all required PT entries were created then.

10

100

1,000

5,000

Ac
ce

ss
 T

im
e

[C
yc

le
s]

ShmemXPMEM XPMEM
PageSize:4KiB PageSize:2MiB

10

100

500

0 4,096 8,192 12,288 16,384
Array Elements [Byte offset]

PiP:process PiP:thread

0 4,096 8,192 12,288 16,384
Array Elements [Byte offset]

PiP:process PiP:thread

Note: Measured only once. The upper graphs show the time series using POSIX
shmem and XPMEM, and the lower graphs show the time series using PiP. Both
graphs on the left-hand side show spikes with 4 KiB page, and the graphs on the
right-hand side show spikes with 2 MiB HugeTLB.

Figure 5: Time series of array access with 64 bytes stride on
Wallaby/Linux

The right graphs show the same benchmark but using HugeTLB.
POSIX shmem cannot handle the HugeTLB on this Linux kernel.
XPMEM does show huge spikes again on the every 4 KiB page
boundary. We consulted the XPMEM device driver source code

Xeon E5-2650 v2 8×2(×2) 2.6GHz 64 GiB

ROSS 2018 at Tempe, AZ

Page Table Size

 19

Process-in-Process: Techniques for Practical Address-Space Sharing HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

(version 2.6.4) and found that the XPMEM driver can create only
4 KiB PT entries, regardless of the page size of the target region.
In PiP, no TLB-miss spikes can be seen this time because of using
2 MiB pages.

6.3 Total Page Table Size
This subsection focuses on the memory consumption of PTs. We
compared the PiP process and thread models with Pthread, process
fork with POSIX-shmem (the mmap()ed region of the parent process
was inherited by the child process for simplicity), and process fork
with XPMEM.

0.1

1

10

100

10 100 200

To
ta

l P
ag

e
Ta

bl
e

Si
ze

 [M
B]

Tasks

PiP:process

PiP:thread

Pthread

Fork＆Shmem

Fork&XPMEM
160

Note: The results of Fork&Shmem and Fork&XPMEM are overlapped.

Figure 6: Total page table size running on Wallaby/Linux

Figure 6 shows the total size of PTs in a node (y-axis) with vary-
ing number of tasks (x-axis). In this microbenchmark, a 128 MiB
memory region was shared or made accessible among all tasks.
Each task accessed the whole memory region so that all PT en-
tries for the memory region were created. Then we consulted the
/proc/meminfo �le to get the memory size for all PTs in that node.
In Fork&Shmem and Fork&XPMEM, each process has its own PT
with separate PT entries for this memory region to share. In con-
trast, PiP and Pthread share the same PT. As shown in this �gure,
the former cases consume much more memory just for PTs. Table 5
summarizes the number of PT entries required for each technique.

Table 5: Total number of page table entries
Total Number of Page Table Entries

Pthread M + D +
Õ
Si

PiP M +
Õ
Di +

Õ
Si

Process + POSIX shmem (M ⇥ N) +ÕDi +
Õ
Si

Process + XPMEM (M ⇥ N) +ÕDi +
Õ
Si

M is the number of PT entries for the shared-memory region(s).
Si is the number of PT entries for the stack segment of task i .
Di is the number of PT entries to map shared objects belonging to task i .
N is the number of tasks (processes or threads).

6.4 Spawning Time
Our next microbenchmark measured the time for spawning child
tasks. In PiP, all memory mappings were done at the program
loading time, and its cost is hidden from the time for accessing it.
The purpose of this microbenchmark is to measure this “hidden”
cost. Figure 7 compares the time to spawn null tasks by using PiP,
Pthread, fork()&exec(), vfork()&exec(), and posix_spawn().
As shown in this �gure, the PiP spawning times are mostly the
same as those with creating processes, except the OFP case. In most
cases, although the program loading is known to be costly, it does
not happen frequently, so this overhead is acceptable.

1E-4

1E-3

1E-2

1E-1

1E+02E+0

1 10 100 200Ta
sk

 S
pa

w
ni

ng
 T

im
e

[S
]

Tasks
1 10 100 200

Tasks

OFP/Linux the K/XTCOS

Wallaby/McKernel

1E-4

1E-3

1E-2

1E-1

1E+02E+0

Ta
sk

 S
pa

w
ni

ng
 T

im
e

[S
]

PiP:process

PiP:thread

Fork&Exec

Vfork&Exec

PosixSpawn

Pthread

Wallaby/Linux

16 6432 128

16 6432 128

 8 16

Note: On OFP/Linux, the results of Fork&Exec and PosixSpawn are overlapped,
and the results of PiP models and Vfork&Exec are overlapped; on K/XTCOS, the
results of PiP:thread and Pthread are overlapped.

Figure 7: Task spawning time on four platforms

6.5 Performance of mmap()/munmap()
In PiP and Pthread, the memory management structures that point
to the same PT in the Linux kernel are also shared. These structures
must be locked in order to avoid inconsistent states by the race
conditions being accessed simultaneously. This situation never
happens with between processes; and the lock overhead might
be a weak point of PiP when the number of memory segments is
signi�cant, as shown in Figure 1.

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

Ti
m

e
[S

]

PiP:process PiP:thread Pthread Fork

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

2E
+0

1E
+1

1E
+2

1E
+3

2E
+3

Ti
m

e
[S

]

MMAP Size [KB]

2E
+0

1E
+1

1E
+2

1E
+3

2E
+3

MMAP Size [KB]

Wallaby/Linux Wallaby/McKernel

OFP/Linux the K/XTCOS

Note: The results of PiP models and Pthread are overlapped.

Figure 8: Performance of mmap()/munmap() with ten tasks on
four platforms

In this benchmark, memory pages were mmap()ed and then
munmap()ed, repeating 10,000 times. We created ten tasks and mea-
sured times until all tasks �nished. Each PiP task, Pthread, or forked
process was bound to a dedicated CPU core so that it could run
without having any context switching (except in the K computer).
As shown in Figure 8, PiP performance is similar to that of Pthread,
whereas forked processes run much faster.

Process-in-Process: Techniques for Practical Address-Space Sharing HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

(version 2.6.4) and found that the XPMEM driver can create only
4 KiB PT entries, regardless of the page size of the target region.
In PiP, no TLB-miss spikes can be seen this time because of using
2 MiB pages.

6.3 Total Page Table Size
This subsection focuses on the memory consumption of PTs. We
compared the PiP process and thread models with Pthread, process
fork with POSIX-shmem (the mmap()ed region of the parent process
was inherited by the child process for simplicity), and process fork
with XPMEM.

0.1

1

10

100

10 100 200

To
ta

l P
ag

e
Ta

bl
e

Si
ze

 [M
B]

Tasks

PiP:process

PiP:thread

Pthread

Fork＆Shmem

Fork&XPMEM
160

Note: The results of Fork&Shmem and Fork&XPMEM are overlapped.

Figure 6: Total page table size running on Wallaby/Linux

Figure 6 shows the total size of PTs in a node (y-axis) with vary-
ing number of tasks (x-axis). In this microbenchmark, a 128 MiB
memory region was shared or made accessible among all tasks.
Each task accessed the whole memory region so that all PT en-
tries for the memory region were created. Then we consulted the
/proc/meminfo �le to get the memory size for all PTs in that node.
In Fork&Shmem and Fork&XPMEM, each process has its own PT
with separate PT entries for this memory region to share. In con-
trast, PiP and Pthread share the same PT. As shown in this �gure,
the former cases consume much more memory just for PTs. Table 5
summarizes the number of PT entries required for each technique.

Table 5: Total number of page table entries
Total Number of Page Table Entries

Pthread M + D +
Õ
Si

PiP M +
Õ
Di +

Õ
Si

Process + POSIX shmem (M ⇥ N) +ÕDi +
Õ
Si

Process + XPMEM (M ⇥ N) +ÕDi +
Õ
Si

M is the number of PT entries for the shared-memory region(s).
Si is the number of PT entries for the stack segment of task i .
Di is the number of PT entries to map shared objects belonging to task i .
N is the number of tasks (processes or threads).

6.4 Spawning Time
Our next microbenchmark measured the time for spawning child
tasks. In PiP, all memory mappings were done at the program
loading time, and its cost is hidden from the time for accessing it.
The purpose of this microbenchmark is to measure this “hidden”
cost. Figure 7 compares the time to spawn null tasks by using PiP,
Pthread, fork()&exec(), vfork()&exec(), and posix_spawn().
As shown in this �gure, the PiP spawning times are mostly the
same as those with creating processes, except the OFP case. In most
cases, although the program loading is known to be costly, it does
not happen frequently, so this overhead is acceptable.

1E-4

1E-3

1E-2

1E-1

1E+02E+0

1 10 100 200Ta
sk

 S
pa

w
ni

ng
 T

im
e

[S
]

Tasks
1 10 100 200

Tasks

OFP/Linux the K/XTCOS

Wallaby/McKernel

1E-4

1E-3

1E-2

1E-1

1E+02E+0

Ta
sk

 S
pa

w
ni

ng
 T

im
e

[S
]

PiP:process

PiP:thread

Fork&Exec

Vfork&Exec

PosixSpawn

Pthread

Wallaby/Linux

16 6432 128

16 6432 128

 8 16

Note: On OFP/Linux, the results of Fork&Exec and PosixSpawn are overlapped,
and the results of PiP models and Vfork&Exec are overlapped; on K/XTCOS, the
results of PiP:thread and Pthread are overlapped.

Figure 7: Task spawning time on four platforms

6.5 Performance of mmap()/munmap()
In PiP and Pthread, the memory management structures that point
to the same PT in the Linux kernel are also shared. These structures
must be locked in order to avoid inconsistent states by the race
conditions being accessed simultaneously. This situation never
happens with between processes; and the lock overhead might
be a weak point of PiP when the number of memory segments is
signi�cant, as shown in Figure 1.

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

Ti
m

e
[S

]

PiP:process PiP:thread Pthread Fork

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

2E
+0

1E
+1

1E
+2

1E
+3

2E
+3

Ti
m

e
[S

]

MMAP Size [KB]

2E
+0

1E
+1

1E
+2

1E
+3

2E
+3

MMAP Size [KB]

Wallaby/Linux Wallaby/McKernel

OFP/Linux the K/XTCOS

Note: The results of PiP models and Pthread are overlapped.

Figure 8: Performance of mmap()/munmap() with ten tasks on
four platforms

In this benchmark, memory pages were mmap()ed and then
munmap()ed, repeating 10,000 times. We created ten tasks and mea-
sured times until all tasks �nished. Each PiP task, Pthread, or forked
process was bound to a dedicated CPU core so that it could run
without having any context switching (except in the K computer).
As shown in Figure 8, PiP performance is similar to that of Pthread,
whereas forked processes run much faster.

Sharing 128 MiB/Task

Xeon E5-2650 v2 8×2(×2) 2.6GHz 64 GiB

ROSS 2018 at Tempe, AZ

Page Fault
• Sender allocates memory region and set some values
• Receiver scan the data in the “shared” memory region

• Measure the each access time on the reciever

 20

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa

accesses, and (2) a program follows the multiprocess model where
static variables are intensively used. PiP has no advantage over the
multithread model in the former case, however, the latter can be
dramatically optimized by using PiP with only small code recon-
struction — something no other existing technique can achieve, as
demonstrated in the hybrid MPI+Threads example.

The majority of hybrid MPI+Threads-based applications still
follow the MPI funneled safety to work around the performance
issues in multithreading safety. However, such an approach can no
longer satisfy the network throughput, especially on many-core
architectures where performance highly relies on the concurrence
of a large number of low-frequency cores polling the network. Thus,
an increasing number of applications are being built by using the
multithreading mode [26], and PiP will be the ideal tool to maximize
communication performance.

5 EXPERIMENTAL SETTING
We used four experimental platforms to cover several OS kernels
and CPU architectures in our evaluation, as listed in Tables 2 and 3.
The Linux kernel on the K computer is old, and we gave up trying
to install the patched Glibc. The CPU of the K computer supports
only eight cores, thus PiP without the patched Glibc can still utilize
all CPU cores.

McKernel is a multikernel that runs Linux with a lightweight
kernel side by side on compute nodes [17]. In the experiments
with McKernel on Wallaby, McKernel was con�gured to run on 14
cores out of 16, and the Linux kernel ran on the remaining 2 cores.
Since the current McKernel is unable to handle the clone() �ag
combination described in Section 3.3, the PiP programs ran in the
thread execution mode.

We report the results of each experiment by averaging 10 execu-
tions, unless otherwise stated.

Table 2: Experimental platform hardware information
Name CPU # Cores Clock Memory Network
Wallaby Xeon E5-2650 v2 8⇥2(⇥2) 2.6GHz 64 GiB ConnectX-3
OFP† Xeon Phi 7250 68(⇥4) 1.4GHz 96(+16) GiB Omni-Path
K [44] SPARC64 VIIIfx 8 2.0GHz 16 GiB Tofu

Table 3: Experimental platform software information
Name OS Glibc PiP Exec. Mode(s)
Wallaby Linux (CentOS 7.3) w/ patch process and thread
Wallaby McKernel+CentOS 7.3 w/ patch thread only
OFP† Linux (CentOS 7.2) w/ patch process and thread
K XTCOS w/o patch process and thread

† Oakforest-PACS (OFP) http://jcahpc.jp/eng/ofp_intro.html. The �at mode was
used in the showcase evaluations in Section 7.1 and 7.3 without using MCDRAM
(16GiB). The other evaluations were done with the cache quadrant mode.

6 PIP PERFORMANCE ANALYSIS
We evaluate the characteristics of PiP by using a set of in-house
microbenchmarks.

6.1 Setup Overhead
In this microbenchmark, the root task created and initialized a 2 GiB
shared array with integer elements, and then a child task summed

members of the array, assuming that the root task sent integer
data to the child task via the allocated region. We implemented the
XPMEM based and POSIX shmem based versions. Table 4 shows
the times spent in the XPMEM and POSIX shmem functions. PiP
also provides the XPMEM APIs so that the XPMEM version can be
easily linked to PiP. Most of the XPMEM functions provided by PiP
do almost nothing, and the overhead of each function is only 40–80
clock cycles.

Table 4: Overhead of XPMEM and POSIX shmem functions
on Wallaby/Linux

XPMEM Cycles
xpmem_make() 1,585
xpmem_get() 15,294

xpmem_attach() 2,414
xpmem_detach() 19,183
xpmem_release() 693

POSIX Shmem Cycles
Sender shm_open() 22,294

ftruncate() 4,080
mmap() 5,553
close() 6,017

Receiver shm_open() 13,522
mmap() 16,232
close() 16,746

Note: Measured only once.

6.2 Page Fault Overhead
Figure 5 shows the time series of each access using the same mi-
crobenchmark program used in the preceding subsection. Element
access was stridden with 64 bytes so that each cache block was
accessed only once, to eliminate the cache block e�ect. The left-
hand graphs show spikes with 4KiB page size. The spike heights
of XPMEM are higher than the ones of POSIX shmem, however,
the PiP process mode and PiP thread mode show the lowest spike
heights. With XPMEM and POSIX, a PF happened every time a
new memory page is accessed. The spikes in PiP are the time spent
for the translation lookaside bu�er (TLB) misses. In PiP, the whole
array was touched at the time of initialization by the root task, and
all required PT entries were created then.

10

100

1,000

5,000

Ac
ce

ss
 T

im
e

[C
yc

le
s]

ShmemXPMEM XPMEM
PageSize:4KiB PageSize:2MiB

10

100

500

0 4,096 8,192 12,288 16,384
Array Elements [Byte offset]

PiP:process PiP:thread

0 4,096 8,192 12,288 16,384
Array Elements [Byte offset]

PiP:process PiP:thread

Note: Measured only once. The upper graphs show the time series using POSIX
shmem and XPMEM, and the lower graphs show the time series using PiP. Both
graphs on the left-hand side show spikes with 4 KiB page, and the graphs on the
right-hand side show spikes with 2 MiB HugeTLB.

Figure 5: Time series of array access with 64 bytes stride on
Wallaby/Linux

The right graphs show the same benchmark but using HugeTLB.
POSIX shmem cannot handle the HugeTLB on this Linux kernel.
XPMEM does show huge spikes again on the every 4 KiB page
boundary. We consulted the XPMEM device driver source code

Xeon E5-2650 v2 8×2(×2) 2.6GHz 64 GiB

ROSS 2018 at Tempe, AZ

PiP Applications
• PiP application performance numbers will be shown

in the main conference talk

• MPI
• pt2pt communication
• MPI_Win_alloate_shared()

• In-situ
• By putting simulation program and in-situ program

in the same virtual address space
• 2 memory copies can be avoided

• MPI+OpenMP vs. MPI+PiP

 21

ROSS 2018 at Tempe, AZ

Myths on PiP
• It is crazy to mix programs, I cannot debug !

• Can’t you debug multi-thread programs ?

• By using huge pages, PiP has no advantage !
• PiP can work with huge pages
• Pit falls of using huge pages

• Transparent Huge Pages may hinder execution
• Other Huge Page techniques need extra

programming
• Consumes more memory

• Shared memory is enough
• PiP can do better than shared memory

 22

ROSS 2018 at Tempe, AZ

PiP Summary
• 3rd parallel execution model
• User-level Implementation

• No partitioning of virtual address space
• dlmopen(), PIE, and clone()
• Load multi-programs into the same virtual address

space
• No communication (≈ copy),  

but accessing (no copy) by sharing virtual address
space

 23

ROSS 2018 at Tempe, AZ

Comparison

 24

Multi-Process Multi-Thread 3rd Execution
Model

Parallel
Execution yes yes yes

Sharing nothing shared VAS and
variables VAS

Execution starts main arbitrary func main

Multi-
programming yes no yes

ROSS 2018 at Tempe, AZ 25

SMARTMAP
and PVAS

MPC PiP

VAS sharing yes yes yes

Based on process thread process or
thread

Multi-
programming yes no yes

Implementation Kernel Language Library

Execution starts main any func any func

