
ORNL is managed by UT-Battelle
for the US Department of Energy

UNITY: Unified Memory
and File Space

Terry Jones, ORNL
June 27, 2017

Terry Jones, ORNL PI Michael Lang, LANL PI Ada Gavrilovska, GaTech PI

2
ROSS 2017 – Terry Jones – June 27, 2017

• Motivation

• UNITY’s Architecture

• Early Results

• Conclusion

Talk Outline

3
ROSS 2017 – Terry Jones – June 27, 2017

Timeline to a Predicament –
APIs & Growing Memory Complexity

• Problem
– The simple bifurcated memory hierarchy of the 1950s

has evolved into a much more complex hierarchy
while interfaces have remained relatively fixed.

– At the same time, computer architectures have
evolved from single nodes to large parallel systems.

• Solution
– Update the interface to support a prescriptive

(directive based) approach.
– Manage dynamic placement & movement with a

smart distributed runtime system

• Impact
– Enable domain scientist to focus on their specialty

rather than requiring them to become experts on
memory architectures.

– Enable target independent programmability & target
independent performance.

1950 55 60 65 70 75 80 85 90 95 2000 05 10 15 20

MIT Core
memory

IBM RAMAC 305
Magnetic disk
storage (5MB)

IBM
OS/360

Multics
operating

system
Intel DRAM

memory

UNIX
(originally

UNICS)

Cheap 64K
DRAM

Seagate first
mag disk for

microcomputers
(5MB)

POSIX effort
begins

CompactFlash
For consumer

electronics

HDDs reach
1TB with

3.5” platters

MPI-IO
(non-posix API
for parallel I/O)

nVidia HBM
(stacked
memory)

SGI releases
NUMALink

UNITY is
funded

Fig 1: An early memory hierarchy.

4
ROSS 2017 – Terry Jones – June 27, 2017

Processor CPU
(Registers)

Extremely Fast
Extremely Expensive

Tiny Capacity

Main Memory
(Random Access Memory)

DRAM
Volatile
Reasonably Fast
Reasonably Priced
Reasonable Capacity

Magnetic Disk Secondary Storage Level 2
Large Capacity

Slow
Cheap

CPU cache
(Level 1,2,3 cache)

Tertiary StorageTape
Very Large Capacity

Very Slow
Very Cheap

SRAM
Faster

Expensive
Small Capacity

DRAM

Byte Addressable
(STTRAM, PCRAM, ReRAM)

Page based NVM
(NAND Flash)

Secondary Storage Level 1

NAND Flash
Non-byte Addressable
Faster than Magnetic Disk
Reasonably Cheaper than DRAM
Limited Density
Limited Lifetime

Byte-Addressable NVM
Nonvolatile
Reasonably Fast
Product Not Available
Denser than NAND
Limited Lifetime

Capacity

Ac
ce

ss
 S

pe
ed

Exascale and beyond promises to
continue the trend towards complexity

5
ROSS 2017 – Terry Jones – June 27, 2017

Capacity

Ac
ce

ss
 S

pe
ed

The Traditional Dimensions…

6
ROSS 2017 – Terry Jones – June 27, 2017

Capacity

Ac
ce

ss
 S

pe
ed

The Traditional Dimensions are
Being Expanded…

7
ROSS 2017 – Terry Jones – June 27, 2017

Capacity

The Traditional Dimensions Are
Being Expanded Into future directions

Concurrency

Access Speed

Resiliency

Energy

Compatibility with Legacy Apps

8
ROSS 2017 – Terry Jones – June 27, 2017

…But The Exposed Path to Our Memory
Hierarchy Remains Bifurcated

User Space: Applications, Libraries

VFS

Traditional FS

FS Buffer Cache

Block Device

Physical Device: Disks, SSDs

mmapfile IO memory access

Virtual to Physical

Physical Device: NVM, DRAM

Memory
Mapping

9
ROSS 2017 – Terry Jones – June 27, 2017

Implications

User Space: Applications, Libraries

Physical Device: Disks, SSDs

mmapfile IO memory access

File-based IO

Physical Device: NVM, DRAM

• Complexities in managing
power and resilience when
actions can be taken
independently down the two
paths

• Results in application
factoring in multiple data
layouts for different
architectural reasons

• Computers are good at handling the details dynamically

• Burst buffers, new memory layers, concurrency, power and resilience
make data placement difficult for domain scientists.

Memory-based IO

10
ROSS 2017 – Terry Jones – June 27, 2017

UNITY Architecture

Node
Runtime

Application

Optimized
Local Data
Placement

RAM

5 5

RAM

7

4

NVM

2 4

3

1

32

Node
Runtime

Application

Optimized
Local Data
Placement

RAM

5 5

RAM

7

4

NVM

2 4

3

1

32

Node
Runtime

Application

Optimized
Local Data
Placement

DRAM

3 3

HBM

7 2

NVM

2 4

1

1

3

Global-Distibuted Runtime

Fragment Name
Server Global Data Placement

Versioned
Data
Fragments

. .
 .

SNOFlake
Aggregated system statistics

. .
 .

3
7

3
1

2
1

4
2

Fig 1: The UNITY architecture is designed for an
environment that is (a) prescriptive; (b)
distributed; (c) dynamic; (d) cooperative.

Local node runtime
• Persistent deamon to handle subsequent accesses
• Also performs post-job security cleanup

“Dynamic” components
• Active throughout life of application
• Able to adjust strategies
• Incorporates COW optimizations

Local & Global optimizers
• Directs data placement
• Global considers collective & machine status optimizations

Nameserver for metadata management
• Efficiently describes data mappings
• Keeps track of published objects
• Persistent daemon at well known address

11
ROSS 2017 – Terry Jones – June 27, 2017

UNITY Design Objectives

Node
Runtime

Application

Optimized
Local Data
Placement

RAM

5 5

RAM

7

4

NVM

2 4

3

1

32

Node
Runtime

Application

Optimized
Local Data
Placement

RAM

5 5

RAM

7

4

NVM

2 4

3

1

32

Node
Runtime

Application

Optimized
Local Data
Placement

DRAM

3 3

HBM

7 2

NVM

2 4

1

1

3

Global-Distibuted Runtime

Fragment Name
Server Global Data Placement

Versioned
Data
Fragments

. .
 .

SNOFlake
Aggregated system statistics

. .
 .

3
7

3
1

2
1

4
2

Fig 1: The UNITY architecture is designed for an
environment that is (a) prescriptive; (b)
distributed; (c) dynamic; (d) cooperative.

Local node runtime
• Persistent deamon to handle subsequent accesses
• Also performs post-job security cleanup

“Dynamic” components
• Active throughout life of application
• Able to adjust strategies
• Incorporates COW optimizations

Local & Global optimizers
• Directs data placement
• Global considers collective & machine status optimizations

Nameserver for metadata management
• Efficiently describes data mappings
• Keeps track of published objects
• Persistent daemon at well known address

A unified data environment based on a smart
runtime system:

1. frees applications from the complexity of
directly placing and moving data within
multi-tier storage hierarchies,

2. while still meeting application-prescribed
requirements for data access performance,
efficient data sharing, and data durability.

12
ROSS 2017 – Terry Jones – June 27, 2017

Automated movement with Unity

LEGEND

Data Placement Domains With UNITY

Note: The orange triangle () specifies the
UNITY Memory Hierarchy Layer (MHL);
Lower numbers present faster access to the
application while higher numbers present
more aggre-gated capacity to the application.

UNITY
Service

Existing
System SW

Not Likely in future
Architectures

Compute Domain (e.g., Titan) Storage Domain (separate systems)

Compute
Node(s)

IO
Node(s)

RAM

HBM

NVM

SSD

Disk

Tape

2

3

4

5

7

8

9

10

12

13

14

15

17

18

19

20

22

23

24

25

26

UNITY
User

21

Burst
Buffer

Storage
(e.g. Lustre or GPFS)

Tertiary Storage
(e.g., HPSS)

161161

A new API enables domain scientists to describe
how their data is to be used. This permits a smart
runtime system to do the tedious work of
managing data placement and movement.

IMDProviding	a	Prescriptive	API

Vendors are providing multiple APIs to deal with
their novel abilities. Through our co-design
oriented project, we provide a unifying way to
achieve what the domain scientists want in a
machine independent way.

Scientific Achievement

Significance & Impact

Research Details

Fig 1: The UNITY API is designed to be extensible and
flexible – here is an example with meshes & ghost cells.

Currently we have a functional prototype that provides most of the functionality that will be visible to the
application developers using the runtime. We have created a global name service that can be used to query
datasets and where their data is located. We have created a runtime service that runs on each node and
keeps track of the data available locally on the node. The runtime, in conjunction with the global name server
create a distributed data store that can utilize both volatile and nonvolatile memory available on the
supercomputer. We have designed and implemented hooks in the system, so intelligent data placement
services can identify and update the data location and format in order to improve the overall performance.
We have modified the SNAP proxy application to use the Unity’s API. We can checkpoint and restart the
application and can demonstrate the advantages of Unity by checkpointing a N-rank SNAP job and restarting
it as a M-rank job. Datasets/checkpoints can be pulled from multiple hosts over TCP or Infiniband.

‹#›

ROSS 2017 – Terry Jones – June 27, 2017

unity_create_object(“a”, objDescr);
workingset = unity_attach_fragment(workFrag, flags);
xghost = unity_attach_fragment(ghosttop, flags);
yghost = unity_attach_fragment(ghostleft, flags);

for (x=0; x<1000; x++) {
if (x>0) {

reattach(xghost, x);
reattach(yghost, x);

}
// do work
unity_publish(workingset);

}

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16 32 64 128 256 512 1024 2048

Overhead of UNITY
SNAP Checkpoints

Standard Checkpoint UNITY

IMDFirst	– Do	No	Harm

Distributed systems permit needed functionality like
persistent name spaces across run invocations and
across an entire machine. However, they also
require careful design to avoid costly overheads.

Scientific Achievement

Significance & Impact

Research Details

Figure 1: Reported times in seconds; results
are averages of three runs.

Demonstration of interface and architecture with
SNAP.

A “worse-case” scenario for our design is an
important test to determine if the idea is simply not
feasible. We were able to validate that the
overheads associated with UNITY are not
prohibitive even without our “local placement”
engine or “global placement” engine optimizations.

‹#›

ROSS 2017 – Terry Jones – June 27, 2017

• UNITY PHX evaluations on real-world HPC applications and emulated NVRAM hardware shows up
to around 12x speedups in checkpoint times over the naïve NVRAM data copy method. We believe
UNITY PHX’s performance gains will be even more significant on a larger scales where the C/R costs
are even more greater.

IMDSmarter	about	Energy	Consumption

• In next generation machines, standard DRAM and
stacked memory are expected to consume ~85% of
system energy.

• Different policies result in dramatic differences in
performance and energy usage, but existing
interfaces provide little support for policy choice. We
show that simply pre-copying data results in
increased energy with mixed results

Figure 1: energy costs of checkpoint strategies

Scientific Achievement

Significance & Impact

Research Details
• Minimized software stack overheads: shorter I/O

path via API design provides improved performance.
Eliminate NVRAM block device overhead due to file
system and a lengthy I/O path.

UNITY improves energy consumption by intelligently
incorporating an overview of data and thereby
removing unnecessary overheads.

‹#›

ROSS 2017 – Terry Jones – June 27, 2017

IMDSmarter	About	Placement	Decisions

Caching automatically triggers costly data
movement, but there are many applications that
operate just as fast out of slower memory, such as
those with ’stream-based’ access patterns able to
fully take advantage of built-in last level caches.

Scientific Achievement

Significance & Impact

Research Details

Figure 1: UNITY automatically migrates & and
manages complex distributed data hierarchies.

“There are only two
hard things in
Computer Science:
cache invalidation and
naming things.”

~ Phil Karlton (Xerox PARC & Netscape)

UNITY provides a new advanced multi-level caching
capability.

Much memory is touched only once or rarely, but
with caching, any such access results in data
movement from slower to faster memory. This will
quickly consume sparse ’fast’ memory resources.
Allocation and movement informed by application
level hints is preferable. Our system uses a
combination of user-directives and recent history to
improve data placement.

‹#›

ROSS 2017 – Terry Jones – June 27, 2017

Checkpoint/Restart has become an important
component to HPC resiliency. In the future, more
I/O is expected (more cores per node implies more
data).

IMDSmarter	About	Resiliency	and	C/R

• NVRAM provides denser persistent memory,
but has limited bandwidth. RAID like structures
could possibly address bandwidth, but at the
expense of energy.

• DRAM has superior bandwidth compared to
NVRAMs (4x-8x).

• UNITY accelerates critical path data movement
with bandwidth aggregation.

Scientific Achievement

Significance & Impact

Research Details

NVRAM

DRAM

Improved bandwidth => improved performance
Improved performance => improved power usage

UNITY automatically supports aggregate-bandwidth
checkpoints through concurrently accessing DRAM
and NVRAM.

‹#›

ROSS 2017 – Terry Jones – June 27, 2017

18
ROSS 2017 – Terry Jones – June 27, 2017

UNITY Summary

• OBJECTIVE: design and evaluate a new distributed storage paradigm that
unifies the traditionally distinct application views of memory- and file-based
data storage into a single scalable and resilient environment.

• DRIVERS:
– Reducing complexity for Applications
– Unprecedented concurrency (across nodes & within nodes)
– Increasing complexity and tiers for memory & storage
– Limited power budgets
– Number of components raises concern over hardware faults

• WHAT DIFFERENCE WILL IT MAKE: effectively balance data consistency,
data resilience, and power efficiency for a diverse set of science workloads,
– First, provide explicit application-level semantics for data sharing and persistence

among large collections of concurrent data users.
– Second, intelligently manage data placement, movement, and durability within

multi-tier memory and storage systems.

Acknowledgements
Terry Jones1, Mike Lang2, Ada Gavrilovska3,

Latchesar Ionkov2, Douglass Otstott2, Mike Brim1,
Geoffroy Vallee1, Benjamin Mayer1, Aaron Welch1,

Mason Watson1, Greg Eisenhauer3, Thaleia
Doudali3, Pradeep Fernando3

1Oak Ridge National
Lab

Mailstop 5164
Oak Ridge, TN 37831

2Los Alamos
National Lab
PO Box 1663

Los Alamos, NM

3Georgia Tech
University

266 Ferst Drive
Atlanta, GA 30332

The Unity Team is:

Funding for UNITY provided by DOE/ASCR
under the SSIO program, program
manager Lucy Nowell.

This research used resources of the Oak
Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which
is supported by the Office of Science of
the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

