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Timeline to a Predicament –
APIs & Growing Memory Complexity

• Problem
– The simple bifurcated memory hierarchy of the 1950s 

has evolved into a much more complex hierarchy 
while interfaces have remained relatively fixed.

– At the same time, computer architectures have 
evolved from single nodes to large parallel systems.

• Solution
– Update the interface to support a prescriptive 

(directive based) approach.
– Manage dynamic placement & movement with a 

smart distributed runtime system

• Impact
– Enable domain scientist to focus on their specialty 

rather than requiring them to become experts on 
memory architectures.

– Enable target independent programmability & target 
independent performance.
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Fig 1: An early memory hierarchy.
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Being Expanded…



7
ROSS 2017 – Terry Jones – June 27, 2017

Capacity

The Traditional Dimensions Are
Being Expanded Into future directions

Concurrency

Access Speed

Resiliency

Energy

Compatibility with Legacy Apps
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…But The Exposed Path to Our Memory 
Hierarchy Remains Bifurcated

User Space: Applications, Libraries

VFS

Traditional FS

FS Buffer Cache

Block Device

Physical Device: Disks, SSDs

mmapfile IO memory access

Virtual to Physical

Physical Device: NVM, DRAM

Memory
Mapping
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Implications

User Space: Applications, Libraries

Physical Device: Disks, SSDs

mmapfile IO memory access

File-based IO

Physical Device: NVM, DRAM

• Complexities in managing 
power and resilience when 
actions can be taken 
independently down the two 
paths

• Results in application 
factoring in multiple data 
layouts for different 
architectural reasons

• Computers are good at handling the details dynamically

• Burst buffers, new memory layers, concurrency, power and resilience 
make data placement difficult for domain scientists.

Memory-based IO
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UNITY Architecture
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Fig 1: The UNITY architecture is designed for an 
environment that is (a) prescriptive; (b) 
distributed; (c) dynamic; (d) cooperative.

Local node runtime
• Persistent deamon to handle subsequent accesses
• Also performs post-job security cleanup

“Dynamic” components
• Active throughout life of application
• Able to adjust strategies
• Incorporates COW optimizations

Local & Global optimizers
• Directs data placement
• Global considers collective & machine status optimizations

Nameserver for metadata management
• Efficiently describes data mappings
• Keeps track of published objects
• Persistent daemon at well known address
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UNITY Design Objectives
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Fig 1: The UNITY architecture is designed for an 
environment that is (a) prescriptive; (b) 
distributed; (c) dynamic; (d) cooperative.

Local node runtime
• Persistent deamon to handle subsequent accesses
• Also performs post-job security cleanup

“Dynamic” components
• Active throughout life of application
• Able to adjust strategies
• Incorporates COW optimizations

Local & Global optimizers
• Directs data placement
• Global considers collective & machine status optimizations

Nameserver for metadata management
• Efficiently describes data mappings
• Keeps track of published objects
• Persistent daemon at well known address

A unified data environment based on a smart 
runtime system:

1. frees applications from the complexity of 
directly placing and moving data within 
multi-tier storage hierarchies, 

2. while still meeting application-prescribed 
requirements for data access performance, 
efficient data sharing, and data durability. 



12
ROSS 2017 – Terry Jones – June 27, 2017

Automated movement with Unity

LEGEND

Data Placement Domains With UNITY

Note:  The orange triangle (      ) specifies the 
UNITY Memory Hierarchy Layer (MHL); 
Lower numbers present faster access to the 
application while higher numbers present 
more aggre-gated capacity to the application.
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A new API enables domain scientists to describe 
how their data is to be used. This permits a smart 
runtime system to do the tedious work of 
managing data placement and movement.

IMDProviding	a	Prescriptive	API

Vendors are providing multiple APIs to deal with 
their novel abilities. Through our co-design 
oriented project, we provide a unifying way to 
achieve what the domain scientists want in a 
machine independent way.

Scientific Achievement

Significance & Impact

Research Details

Fig 1: The UNITY API is designed to be extensible and 
flexible – here is an example with meshes & ghost cells.

Currently we have a functional prototype that provides most of the functionality that will be visible to the
application developers using the runtime. We have created a global name service that can be used to query
datasets and where their data is located. We have created a runtime service that runs on each node and
keeps track of the data available locally on the node. The runtime, in conjunction with the global name server
create a distributed data store that can utilize both volatile and nonvolatile memory available on the
supercomputer. We have designed and implemented hooks in the system, so intelligent data placement
services can identify and update the data location and format in order to improve the overall performance.
We have modified the SNAP proxy application to use the Unity’s API. We can checkpoint and restart the
application and can demonstrate the advantages of Unity by checkpointing a N-rank SNAP job and restarting
it as a M-rank job. Datasets/checkpoints can be pulled from multiple hosts over TCP or Infiniband.

‹#›
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unity_create_object(“a”, objDescr);
workingset = unity_attach_fragment(workFrag, flags);
xghost = unity_attach_fragment(ghosttop, flags);
yghost = unity_attach_fragment(ghostleft, flags);

for (x=0; x<1000; x++) {
if ( x>0 ) {

reattach(xghost, x);
reattach(yghost, x);

}
// do work
unity_publish(workingset);

}
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IMDFirst	– Do	No	Harm

Distributed systems permit needed functionality like 
persistent name spaces across run invocations and 
across an entire machine. However, they also 
require careful design to avoid costly overheads.

Scientific Achievement

Significance & Impact

Research Details

Figure 1: Reported times in seconds; results 
are averages of three runs.

Demonstration of interface and architecture with 
SNAP.

A “worse-case” scenario for our design is an 
important test to determine if the idea is simply not 
feasible. We were able to validate that the 
overheads associated with UNITY are not 
prohibitive even without our “local placement” 
engine or “global placement” engine optimizations.

‹#›
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• UNITY PHX evaluations on real-world HPC applications and emulated NVRAM hardware shows up 
to around 12x speedups in checkpoint times over the naïve NVRAM data copy method.  We believe 
UNITY PHX’s performance gains will be even more significant on a larger scales where the C/R costs 
are even more greater.

IMDSmarter	about	Energy	Consumption

• In next generation machines, standard DRAM and 
stacked memory are expected to consume ~85% of 
system energy.

• Different policies result in dramatic differences in 
performance and energy usage, but existing 
interfaces provide little support for policy choice. We 
show that simply pre-copying data results in 
increased energy with mixed results

Figure 1: energy costs of checkpoint strategies

Scientific Achievement

Significance & Impact

Research Details
• Minimized software stack overheads: shorter I/O 

path via API design provides improved performance. 
Eliminate NVRAM block device overhead due to file 
system and a lengthy I/O path.

UNITY improves energy consumption by intelligently 
incorporating an overview of data and thereby 
removing unnecessary overheads.

‹#›
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IMDSmarter	About	Placement	Decisions

Caching automatically triggers costly data 
movement, but there are many applications that 
operate just as fast out of slower memory, such as 
those with ’stream-based’ access patterns able to 
fully take advantage of built-in last level caches.

Scientific Achievement

Significance & Impact

Research Details

Figure 1: UNITY automatically migrates & and 
manages complex distributed data hierarchies.

“There are only two
hard things in 
Computer Science:
cache invalidation and
naming things.”

~ Phil Karlton (Xerox PARC & Netscape)

UNITY provides a new advanced multi-level caching 
capability.

Much memory is touched only once or rarely, but 
with caching, any such access results in data 
movement from slower to faster memory. This will 
quickly consume sparse ’fast’ memory resources. 
Allocation and movement informed by application 
level hints is preferable. Our system uses a 
combination of user-directives and recent history to 
improve data placement.

‹#›
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Checkpoint/Restart has become an important 
component to HPC resiliency. In the future, more 
I/O is expected (more cores per node implies more 
data).

IMDSmarter	About	Resiliency	and	C/R

• NVRAM provides denser persistent memory, 
but has limited bandwidth. RAID like structures 
could possibly address bandwidth, but at the 
expense of energy.

• DRAM has superior bandwidth compared to 
NVRAMs (4x-8x).

• UNITY accelerates critical path data movement 
with bandwidth aggregation.

Scientific Achievement

Significance & Impact

Research Details

NVRAM

DRAM

Improved bandwidth     => improved performance
Improved performance => improved power usage

UNITY automatically supports aggregate-bandwidth 
checkpoints through concurrently accessing DRAM 
and NVRAM.

‹#›
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UNITY Summary

• OBJECTIVE: design and evaluate a new distributed storage paradigm that 
unifies the traditionally distinct application views of memory- and file-based 
data storage into a single scalable and resilient environment. 

• DRIVERS: 
– Reducing complexity for Applications
– Unprecedented concurrency (across nodes & within nodes)
– Increasing complexity and tiers for memory & storage
– Limited power budgets
– Number of components raises concern over hardware faults

• WHAT DIFFERENCE WILL IT MAKE: effectively balance data consistency, 
data resilience, and power efficiency for a diverse set of science workloads,
– First, provide explicit application-level semantics for data sharing and persistence 

among large collections of concurrent data users. 
– Second, intelligently manage data placement, movement, and durability within 

multi-tier memory and storage systems.
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