
© 2017 IBM Corporation

Jitter-Trace: a low-overhead OS noise 
tracing tool based on Linux Perf

June 27, 2017

Nelson Mimura, Alessandro Morari, Fabio Checconi

IBM T. J. Watson Research Center – Yorktown Heights, NY



© 2017 IBM Corporation

Outline

• Jitter

• Scheduling and Linux Tracing

• Tracepoints and Events

• Implementation and Experiments

• Overhead

• Conclusions

2



© 2017 IBM Corporation

Jitter

• Activities can interfere with a running 
application by stealing CPU time from it
• Noise can come from other sources 

(e.g., network, other applications)

• This work focuses on noise caused by 
explicitly scheduling another activity on the 
(V)CPU of a running application

• System activity that stole processor time 
from application is called offender

• Jitter (runtime variability) increases amount 
of time to complete a task
• Reduces system efficiency and throughput

• Effects even more pronounced when 
application relies on communication 
collectives (typical of parallel distributed 
workloads)

3

Barrier

Neighbor Exchange



© 2017 IBM Corporation

Scheduler and Linux Tracing

• Linux kernel exposes several Tracepoints that can 
be used for debugging purposes

• Trace events provide a higher level API on top of 
tracepoints to simplify their utilization

• Tracer tools such as Perf provide a user-friendly 
interface to these events
• User space event-driven tool 

• Widely available in many distributions

• Based on Linux Performance Events Susbsystem 

• Low-overhead measurements (at least an order of 
magnitude faster than instrumenting profilers)

• Jitter-Trace is designed to use the Perf tracing 
infrastructure to perform a quantitative analysis 
of OS noise

• No kernel patching/recompilation required

4



© 2017 IBM Corporation

Tracepoints and Events

• Scheduler manages CPU 
utilization by switching 
processes in and out

• Example of trace showing 
switch in (line 2, context is 
switched to a process) and 
switch out (line 4, context is 
switched to something else)

5

Track current status of 
each process in execution

Track how long each process
has been running on a (V)CPU



© 2017 IBM Corporation

Example of Noise and Process State

• psnap is the application and 
kworker the OS process that 
generates noise

• kworker is switched in (line 2) 
and executes for around 16 us 
(line 3)

6

• Not every switch out leads to 
noise; at line 2, psnap is 
switched out in sleep state
(flag D);

• Different from example above 
where psnap is switched out 
while in running state (flag R)

states



© 2017 IBM Corporation

More Examples (1)

• Example of noise using microbenchmarks

7



© 2017 IBM Corporation

More Examples (2)

• Composite noise (two sources in sequence: periodik, then kworker)

8



© 2017 IBM Corporation

More Examples (3)

• Example of sleep – wake up (periodik)

9



© 2017 IBM Corporation

Implementation

• Python and Bash

• Three main modules to run experiments 
and perform analysis
• perf_start and perf_stop

• perf_analyze

• Analysis process
1. Perf is used to collect scheduling information while 

application is run

2. Perf writes its outputs in binary format

3. perf_timelines uses Perf to convert binary format 
into textual timelines

4. perf_events converts timelines into lists of events

5. perf_analyze concentrates the required logic to 
identify sources of jitter and quantify the noise they 
generate

10



© 2017 IBM Corporation

Experimental Platform

• IBM Spectrum MPI 10.1

• Job submission/management: IBM Spectrum LSF 10.1

11



© 2017 IBM Corporation

Experiments using PSNAP (1)

• PAL System Noise Activity Program, 
benchmark typically used to quantify 
noise from application perspective

• Global List of Offenders

• Global Histogram of Noise Events

12



© 2017 IBM Corporation

Experiments with PSNAP (2)

• Local List of Offenders
(list per application PID)

13



© 2017 IBM Corporation

Experiments with PSNAP (3)

• Histograms per Offender

14



© 2017 IBM Corporation

Experiments on Idle System

• System-wide analysis (identify all processes 
running on an idle system)

15



© 2017 IBM Corporation

Jitter-Trace Overhead

• The processing of noise data is done after the execution of the application
• Only potential source of overhead: Perf

• Overhead quantification: execution of benchmark (konstant)
• One instance per CPU hardware thread (total of 160 processes)

• CPU affinity set for Perf (one VCPU)

• Internal application counters used to evaluate noise

• Total of 3.2 billion iterations (1.6 million less than case without tracing)
• Overhead of 0.05%

• This is also consistent to the overhead computed using Jitter-Trace itself 
(analyzing the statistics about Perf)

16



© 2017 IBM Corporation

Conclusions

• Jitter-Trace
• Built on top of Linux Perf

• Identifies sources of jitter (noise) and 
quantifies them

• Analyzes switching activity from kernel 
scheduler

• Limitations
• Perf requires administrative privileges or 

the configuration of a kernel parameter 
to allow unprivileged tracing

• Jitter-Trace does not account for jitter 
sources that are not processes
• Newer implementation (after submitting 

this paper) provides support to other 
events

17

• Future Work
• Work queue events (kworker detailed 

information) – done

• Interrupts (hardware and software) 
– in progress

• Open source – in progress



© 2017 IBM Corporation

Thank you!

18


