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Changing	Face	of	HPC	Environments

Goal:	Can	asynchronous	task-based	runtimes	handle	
asymmetric performance
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Future:	Collocated	Workloads

Supercomputer

Simulation Visualization

Traditional:	Dedicated	Resources

Supercomputer

Storage	Cluster

Processing	Cluster

Simulation Visualization

• Task-based	Runtimes:	Potential	solution	



Task-based	Runtimes
• Experiencing	renewal	in	interest	in	systems	
community

• Assumed	to	better	address	performance	variability
• Adopt	(Over-)Decomposed	task-based	model

• Allow	fine-grained	scheduling	decisions
• Able	to	adapt	to	asymmetric/variable	performance

• But…
• Originally	designed	for	application	induced	load	
imbalances,	e.g.,	an	adaptive	mesh	refinement	
(AMR)	based	application

• Performance	asymmetry	can	be	of	finer	
granularity,	e.g.,	variable	CPU	time	in	time-shared	
environments
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Basic	Experimental	Evaluation
• Synthetic	situation

• Emulate	performance	asymmetry	in	time-shared	
configuration	

• Static	and	predictable	setting
• Benchmark	on	12	cores,	share	one	core	with	
background	workload

• Vary	the	percentage	of	CPU	time	of	competing	
workload

• Environment:	12	core	dual	socket	compute	node,	
hyperthreading disabled

• Used	cpulimit to	control	percentage	of	CPU	time
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Workload	Configuration
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11	cores	settings

12	cores	settings



Experimental	Setup

• Evaluated	two	different	runtimes:
• Charm++: LeanMD
• HPX-5:	LULESH,	HPCG,	LibPXGL

•Competing	Workload:
• Prime	Number	Generator:	entirely	CPU	bound,	
a	minimal	memory	footprint	

• Kernel	Compilation:	stresses	internal	OS	
features	such	as	I/O	and	memory	subsystem

6



Charm++
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• Iterative	over-decomposed	applications
• Object	based	programming	model	

• Tasks	implemented	as	C++	objects
• Objects	can	migrate	across	intra	and	inter-node	
boundaries



Charm++
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• A	separate	centralized load	balancer	component
• Preempts	application	progress

• Actively migrates	objects	based	on	current	state
• Causes	computation	to	block across	the	other	
cores
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Choice	of	Load	Balancer	Matters
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We	selected	RefineSwapLB for	the	rest	of	the	experiments.

• Comparing	performance	of	different	load	balancing	
strategies	and	without	any	load	balancer

198%	divergence



Invocation	Frequency	Matters
• MetaLB:	

• Invoke	load	balancer	less	frequently	based	on	heuristics
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Load	balancing	overhead	of	RefineSwapLB with	or	without	MetaLB

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90

Ti
m

e 
(s

)

Perc. of CPU utilized by the background workload of prime number generator running on 12th core

Total Runtime of RefineSwapLB with MetaLB Overhead of RefineSwapLB with MetaLB

Total Runtime of RefineSwapLB without MetaLB Overhead of RefineSwapLB without MetaLB

We	enabled	MetaLB for	our	experiments.



Charm++:	LEANMD

• 12	cores	are	worse	than	11	cores	
• …unless	you	have	at	least	75%	of	the	core’s	capacity.

• If	the	application	cannot	get	more	than	75%	of	the	core’s	
capacity,	then	is	better	off	ignoring	the	core	completely.
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Sensitivity	of	perc.	of	CPU	utilization	by	the	background	workload	of	prime	number	generator
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Charm++:	LEANMD

More	variable,	but	consistent	mean	performance.
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Sensitivity	of	perc.	of	CPU	utilization	by	the	background	workload	of	kernel	compilation
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HPX-5
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• Parcel:	
• Contains	a	computational	task	and	a	reference	to	the	data	the	
task	operates	on

• Follows	Work-First principle	of	Cilk-5.
• Every	scheduling	entity	processes	parcels	from	top	of	their	
scheduling	queues.
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HPX-5
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• Implemented	using	Random	Work	Stealing
• No	centralized decision	making	process
• Overhead	of	work	stealing	is	assumed	by	the	
stealer.



OpenMP:	LULESH
• Overall	application	performance	determined	by	the	
slowest	rank.

• Vulnerable	to	asymmetries	in	performance.
• Rely	on	collective	based	communication.
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HPX-5:	LULESH

• No	cross-over	point
• 12	cores	are	consistently	worse	than	11	cores
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• A	traditional	BSP	application	implemented	using	
task-based	programming

42%	divergence

Sensitivity	of	perc.	of	CPU	utilization	by	the	background	workload	of	prime	number	generator
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HPX-5:	HPCG

• Better	than	the	theoretical	expectation
• 12	cores	are	consistently	worse	than	11	cores
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• Another	BSP	application	implemented	in	task-
based	model

10%	to	
background	
workload

5%	divergence

Sensitivity	of	perc.	of	CPU	utilization	by	the	background	workload	of	prime	number	generator



HPX-5:	LibPXGL

• No	cross-over	point
• 12	cores	are	consistently	worse	than	11	cores
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• An	asynchronous	graph	processing	library
• A	more	natural	fit
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HPX-5:	Kernel	Compilation
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LULESH HPCG

LibPXGL

-6.26

-1.06

4.14

9.34

14.54

19.74

24.94

30.14

35.34

40.54

45.74

90

95

100

105

110

115

120

125

130

135

140

0 10 20 30 40 50 60 70 80 90 100

Percentage perform
ance degradation

Ru
nt

im
e 

(s
)

Percentage of CPU speed consumed by background workload on 12th core

12 threads on 12 cores 11 threads on 11 cores

-4.7

-0.37

3.96

8.29

12.62

16.95

110

115

120

125

130

135

0 10 20 30 40 50 60 70 80 90 100

Percentage perform
ance degradation

Ru
nt

im
e 

(s
)

Percentage of CPU speed consumed by background workload on 12th core

12 threads on 12 cores 11 threads on 11 cores

More	immediate,	instead	of	gradual	decline.



Conclusion

•Performance	asymmetry	is	still	challenging
•Preliminary	evaluation:

• Tightly	controlled	time-shared	CPUs
• Static	and	consistent	configuration

•Better	than	BSP,	but…
• On	average	a	CPU	loses	its	utility	to	a	task	
based	runtime	as	soon	as	its	performance	
diverges	by	only	25%.
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• Debashis	Ganguly

• Ph.D.	Student,	Computer	Science	Department,	University	of	
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• debashis@cs.pitt.edu
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• http://www.prognosticlab.org
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