
ADAM LACKORZYNSKI, CARSTEN WEINHOLD, HERMANN HÄRTIG
TU DRESDEN, GERMANY

DECOUPLED: LOW-EFFORT NOISE-FREE
EXECUTION ON COMMODITY SYSTEMS

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems

Execution-time jitter / OS noise

Bulk-synchronous programming codes

2

PROBLEM

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems 3

APPROACHES

LWK

AppApp App

Argo
Cray

CNK

Linux

AppApp App

LWK
 ⊕ No Noise

 ⊖ Compatibility

 ⊖ Features

Linux (tweaked)
 ⊙ Low Noise
 ⊕ Compatibility
 ⊕ Features
 ⊖ Fast moving target

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems 4

APPROACHES

LWK

AppApp App

Argo
Cray

CNK

Linux

AppApp App

LWK
 ⊕ No Noise

 ⊖ Compatibility

 ⊖ Features

Linux

App App

LWK

LWK + Linux
 ⊕ No Noise
 ⊕ Compatibility
 ⊕ Features

mOS

McKernel
Hobbes/Kitten

Linux (tweaked)
 ⊙ Low Noise
 ⊕ Compatibility
 ⊕ Features
 ⊖ Fast moving target

Proxy

⊖ Much effort

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems

L4Linux

5

L4 + L4LINUX

L4 Microkernel

Core Core Core Core Core

Linux
App

Paravirtualized L4Linux: arch/l4
Well maintained for 20 years now
Linux processes are L4 Tasks
Threads multiplexed onto vCPU
Linux syscalls / exceptions: reflected to
vCPU entry point
Handle syscall + resume user thread

vCPU entry point

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems

L4Linux

6

DECOUPLED EXECUTION

L4 Microkernel

Core Core Core Core Core

Linux
App

Decoupling:
Create new L4 thread on
dedicated core
Mark Linux thread context
uninterruptible

Linux syscall:
Forward to vCPU entry point
Reactivate Linux thread context

L4 syscalls
possible

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems 7

FWQ BENCHMARK

Noise Analysis

● Standard HPC system, standard batch job submission

Noise Analysis

● Standard HPC system, standard batch job submission

Noise Analysis

● Standard HPC system, standard batch job submission
Ex

ec
ut

io
n

Ti
m

e

Iterations

4.25 million cycles

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems 8

NOISY LINUX?

Noise Analysis

● Different socket
Socket 1 Socket 2

+ 0 cycles

Ideal: zero extra cycles

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems 9

DECOUPLED EXECUTION

Noise Analysis

● Decoupled+60 cycles

Noise Analysis

● Decoupled

Decoupled Linux thread

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems

Noise Analysis

● Different socket
Socket 1 Socket 2

Noise Analysis

● Different socket
Socket 1 Socket 2

10

DECOUPLED EXECUTION

Decoupled Linux thread

Noise Analysis

● Different socket
Socket 1 Socket 2

+4 cycles

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems 11

MPI-FWQ

Work Work Work Work WorkStartSync:

StepSync: Work

time to completion

time to completion

Work Work Work Work Work

Work

Behavior: embarrassingly parallel

Behavior: bulk-synchronous

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems

Ru
n

Ti
m

e
in

 S
ec

on
ds

20,00

22,50

25,00

27,50

30,00

32,50

35,00

Number of Cores

240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880

StartSync Min StartSync Max
StepSync

12

VENDOR-PROVIDED OS [JURECA]

2x 12-core Xeon® E5-2680-v3, FDR InfiniBand
OS based on CentOS 7.2 + Linux 3.10

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems

Ru
n

Ti
m

e
in

 S
ec

on
ds

20,00

22,50

25,00

27,50

30,00

32,50

35,00

Number of Cores

240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880

StartSync Min StartSync Max
StepSync

Ru
n

Ti
m

e
in

 S
ec

on
ds

20,00

22,50

25,00

27,50

30,00

32,50

35,00

Number of Cores

240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880

StartSync Min StartSync Max
StepSync

13

VENDOR-PROVIDED OS [TAURUS]

2x 12-core Xeon® E5-2680-v3, FDR InfiniBand
OS based on CentOS 7.2 + Linux 3.10

2x 12-core Xeon® E5-2680-v3, FDR InfiniBand
OS based on RHEL 6.4 + Linux 2.6.32

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems

Bare-metal access to Taurus:
Little time
Fewer cores
Different type of nodes

Vendor OS: Linux 2.6.32 or 3.10 …

Decoupled threads: L4Linux 4.4

Custom Linux distribution

14

EVALUATION SETUP

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems 15

L4LINUX+DECOUPLING: STARTSYNC
Ru

n
Ti

m
e

in
 S

ec
on

ds

18,00

18,05

18,10

18,15

18,20

18,25

18,30

18,35

18,40

Number of Cores

30 90 150 210 270 330 390 450 510 570 630 690 750

Standard Min Decoupled Min
Standard Max Decoupled Max

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems 16

L4LINUX+DECOUPLING: STEPSYNC
Ru

n
Ti

m
e

in
 S

ec
on

ds

18,10

18,20

18,30

18,40

18,50

18,60

18,70

Number of Cores

30 90 150 210 270 330 390 450 510 570 630 690 750

Standard Decoupled

Decoupled: Low-Effort Noise-Free Execution on Commodity Systems

Decoupled threads: reduced noise

Virtualization: run unmodified HPC codes

Reuse existing components: 
L4 microkernel + L4Linux

Low effort: developed within 2 weeks(*)

Next steps: more nodes, more workloads

17

CONCLUSION & FUTURE WORK

SPPEXA – Findings & Goals

 Massive parallelism (on- and cross-chip)
requires fundamentally new concepts

 Not “racks without brains”, but software is
the key to this paradigm shift

 Fundamental research (DFG), in contrast to
other (more application-oriented) initiatives
(German Federal Ministry of E & R)

 Establish collaborative, interdisciplinary
co-design of HPC applications and HPC
methods

 Focus on six research directions:
 Computational algorithms
 Application software
 Programming
 System software
 Data management and exploration
 Software tools

SPPEXA – Implementation

 Two three-year funding
phases

 Overall budget of
3,7 M per year

 Funded via DFG’s
strategy fund

 Interdisciplinary consortia
of 3–5 groups

 Consortia address at least two
of SPPExa’s six research directions

 Two-stage application process with
(1) sketches and (2) full proposals

 Global strategic coordination, following
the established procedures of Collaborative
Research Centres (SFB)

 Close collaboration with respective inter-
national programmes intended

w w w . s p p e x a . d e

SPPEXA – Chronology

 2006: discussion in the German Research
Foundation (DFG) on the necessity of a
funding initiative for HPC software

 2010: initiative out of German HPC commu-
nity, referring to increasing activities on HPC
software elsewhere (USA: NSF, DOE; Japan;
China; G8)

 2010: discussion with DFG’s Executive
Committee, suggestion of a fl exible,
strategically initiated SPP

 2011: submission of the proposal, inter-
national reviewing, and formal acceptance

 2012: Review of project sketches and full
proposals

SPPEXA – Current Status

 68 sketches handed in, overall volume
of 19 M per year applied for

 80 different universities, institutes and
companies represented by 240 national
and 15 international PIs

 24 sketches invited for full proposals
 13 full proposals accepted for funding
 Launch of programme and projects in

January 2013

German Priority Programme 1648
“Software for Exascale Computing”

Bo
ris

 L
eh

ne
r f

ür
 H

LR
S

Image: Heiner Igel

Image: Wolfgang E. Nagel

