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Executive Summary

• Both architectures and applications are growing more complex
– Trends dictate that this will get worse, not better
– This complexity creates irregularity in computation, communication, and data movement

• Dynamic resource management is one way to help manage this irregularity
– Need accurate policies to guide resource decisions
– Examples: greedy work stealing, algorithmic, historical, cost models, application specific, etc

• Posit that we can use application-specific performance models to inform scheduling 
decisions
– Aspen performance modeling language helps create models
– Two recent experiments

• GPU offload

• Distributed scientific workflows



Trends toward Exascale
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Exascale architecture targets circa 2009
2009 Exascale Challenges Workshop in San Diego 

System attributes 2009 “Pre-Exascale” “Exascale”

System peak 2 PF 100-200 PF/s 1 Exaflop/s

Power 6 MW 15 MW 20 MW

System memory 0.3 PB 5 PB 32–64 PB

Storage 15 PB 150 PB 500 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size (nodes) 18,700 500,000 50,000 1,000,000 100,000

Node interconnect BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s

MTTI day O(1 day) O(0.1 day)

Attendees envisioned two possible architectural swim lanes:

1. Homogeneous many-core thin-node system

2. Heterogeneous (accelerator + CPU)  fat-node system
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Contemporary ASCR Computing At a Glance

System attributes
NERSC

Now

OLCF

Now

ALCF 

Now
NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA
Cori

2016

Summit

2017-2018

Theta

2016

Aurora

2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180 

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High 

Bandwidth Memory 

(HBM)+1.5PB 

persistent memory 

> 1.74 PB DDR4 + 

HBM + 2.8 PB 

persistent memory

>480 TB DDR4 + 

High Bandwidth 

Memory (HBM)

> 7 PB High Bandwidth 

On-Package Memory 

Local Memory and 

Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors
Intel Ivy 

Bridge 

AMD 

Opteron

Nvidia

Kepler  

64-bit 

PowerPC 

A2

Intel Knights Landing  

many core CPUs 

Intel Haswell CPU in 

data partition

Multiple IBM 

Power9 CPUs &

multiple Nvidia

Voltas GPUS

Intel Knights Landing 

Xeon Phi many core 

CPUs

Knights Hill Xeon Phi 

many core CPUs  

System size (nodes)
5,600 

nodes

18,688

nodes
49,152

9,300 nodes

1,900 nodes in data 

partition

~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries
Dual Rail 

EDR-IB
Aries

2nd Generation Intel 

Omni-Path Architecture

File System

7.6 PB

168 GB/s,

Lustre®

32 PB

1 TB/s,

Lustre®

26 PB

300 GB/s 

GPFS™

28 PB

744 GB/s 

Lustre®

120 PB

1 TB/s

GPFS™

10PB, 210 GB/s 

Lustre initial

150 PB

1 TB/s

Lustre®

Complexity α T
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Complexity is the next major challenge!

• “Exciting” times in computer architecture
– Heterogeneous cores

– Multimode memory systems

– Fused memory systems

– I/O architectures

– Error correction

– Changing system balance

• Uncertainty, Ambiguity
– How do we design future systems so that they are faster than current systems on mission applications?

• Entirely possible that the new system will be slower than the old system!

– How do we provide some level of performance portability for applications teams?

– How do we understand reliability and performance problems?

• Managing complexity is our main challenge!



Performance Prediction with Aspen
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Example Ad Hoc Model: Latex Equations
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Example: Ad-Hoc Excel Files
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Prediction Techniques Ranked
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Aspen: Abstract Scalable Performance Engineering Notation

Representation in Aspen

• Modular

• Sharable

• Composable

• Reflects prog structure

E.g., MD, UHPC CP 1, Lulesh, 

3D FFT, CoMD, VPFFT, …

Source code
Aspen code

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in Proc. SC12.

• Static analysis via compiler, 
tools

• Empirical, Historical

• Manual (for future applications)

Model Creation

• Interactive tools for graphs, 
queries

• Design space exploration

• Workload Generation

• Feedback to Runtime Systems

Model Uses



Creating an Aspen Model
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Manual Example of LULESH
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COMPASS System Overview

source code
Input Program 

Analyzer

Aspen machine 

model

OpenARC IR 

with Aspen 

annotations

Aspen IR 

Generator

ASPEN IR

Aspen IR 

Postprocessor

Aspen 

application 

model
Aspen 

Performance 

Prediction 

Tools

Program 

characteristics 

(flops, loads, 

stores, etc.)

Runtime 

prediction

Optional feedback for advanced users

Other program 

analysis










S. Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in ACM International Conference on 

Supercomputing (ICS). Newport Beach, California: ACM, 2015, 10.1145/2751205.2751220.
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MM example generated from COMPASS
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Example: LULESH (10% of 1 kernel)

kernel IntegrateStressForElems
{

execute [numElem_CalcVolumeForceForElems]
{

loads [((1*aspen_param_int)*8)] from elemNodes as stride(1)
loads [((1*aspen_param_double)*8)] from m_x
loads [((1*aspen_param_double)*8)] from m_y
loads [((1*aspen_param_double)*8)] from m_z
loads [(1*aspen_param_double)] from determ as stride(1)
flops [8] as dp, simd
flops [8] as dp, simd
flops [8] as dp, simd
flops [8] as dp, simd
flops [3] as dp, simd
flops [3] as dp, simd
flops [3] as dp, simd
flops [3] as dp, simd
stores [(1*aspen_param_double)] as stride(0)
flops [2] as dp, simd
stores [(1*aspen_param_double)] as stride(0)
flops [2] as dp, simd
stores [(1*aspen_param_double)] as stride(0)
flops [2] as dp, simd
loads [(1*aspen_param_double)] as stride(0)
stores [(1*aspen_param_double)] as stride(0)
loads [(1*aspen_param_double)] as stride(0)
stores [(1*aspen_param_double)] as stride(0)
loads [(1*aspen_param_double)] as stride(0)
. . . . . .

- Input LULESH program: 

3700 lines of C codes

- Output Aspen model: 

2300 lines of Aspen codes
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Model Validation
FLOPS LOADS STORES

MATMUL 15% <1% 1%

LAPLACE2D 7% 0% <1%

SRAD 17% 0% 0%

JACOBI 6% <1% <1%

KMEANS 0% 0% 8%

LUD 5% 0% 2%

BFS <1% 11% 0%

HOTSPOT 0% 0% 0%

LULESH 0% 0% 0%

0% means that prediction fell between measurements from optimized

and unoptimized runs of the code.
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Black Box Analytical Modeling

• In some cases, we do not have access to a 
white box Aspen performance model

• Using input vector and empirical results, we 
can develop Aspen Black Box model

• User provides
– measured runtimes with app/machine

parameters
• e.g. nAtoms, nCores

– template Aspen model with
• application parameters

• unknowns to solve for

– new machine models (if necessary)

• Modeling tool
– Generates symbolic predictions

– Combines with measurements to 
generate objective function

– Solves for unknowns in template 

– Output: completed app model usable for 
predictive behavior

Measured 

Application 

Runtimes

Aspen 

Library

Template 

Aspen 

App 

Model

Aspen 

Hardware 

Models

Symbolic 

Runtime 

Equations

Nonlinear 

Optimizer
Objective 

Function

Aspen Black-box 

Modeling Tool

Aspen 

Tool 

Suite

Runtime /  

Threshold 

Prediction

s

Application-

Specific 

Aspen Model
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• nAtoms and nTimeSteps defined in template application model and 
CSV input data

• nCores defined in machine models and CSV input data

• solves for c and d, filling out a concrete application model for that 
problem

• new predictions can still vary nAtoms, nTimeSteps, and nCores

Black Box Modeling Example

model NAMD_Template {

// application parameters

// (defined in the input file)

param nAtoms     = 1e6

param nTimeSteps = 100

// solve for these parameters

// (within the given ranges)

param c = 1 in 1 .. 1e18

param d = 1 in 1 .. 1e18

// application behavior:

// execution and control flow

kernel main

{

iterate [nTimeSteps] {

execute {

loads [c * nAtoms^2]

flops [d * nAtoms]

}

}

}

}

model NAMD_Equilibrate {

// NAMD input parameters

param nAtoms     = 1e6

param nTimeSteps = 100

// calculation-specific constants

param c = 402.1

param d = 10.95

// NAMD application behavior

kernel main

{

iterate [nTimeSteps] {

execute {

loads [c * nAtoms^2]

flops [d * nAtoms]

}

}

}

}

nAtoms
nTimeStep

s
nCores machine runtime

1e6 100 144 exogeni 384.2

1e6 100 144 hopper 340.1

1e6 150 144 hopper 482.9

+ =

MD template model CSV data file with parameters 

and runtimes
Concrete NAMD model



Using an Aspen Model
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Aspen: Abstract Scalable Performance Engineering Notation

Representation in Aspen

• Modular

• Sharable

• Composable

• Reflects prog structure

E.g., MD, UHPC CP 1, Lulesh, 

3D FFT, CoMD, VPFFT, …

Source code
Aspen code

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in Proc. SC12.

• Static analysis via compiler, 
tools

• Empirical, Historical

• Manual (for future applications)

Model Creation

• Interactive tools for graphs, 
queries

• Design space exploration

• Workload Generation

• Feedback to Runtime Systems

Model Uses
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View Aspen performance models as normal performance analysis 
output with Gprof

Flat profile:

%    cum    self        self      total           
time  sec    sec  calls ms/call   ms/call   name  

------------------------------------------------------------
86.91 370.76 370.76  30 12358.52   12358.52  fft3d.localFFT
10.03 413.54  42.78  20  2139.09    2139.09  fft3d.exchange
3.06 426.57  13.03  20   651.71     651.71  fft3d.shuffle
0.00 426.57   0.00  10     0.03       0.03  exchange
0.00 426.57   0.00  10     0.03       0.03  buildNList
0.00 426.57   0.00  10     0.01       0.01  ljForce
0.00 426.57   0.00  30     0.00       0.00  integrate
0.00 426.57   0.00  10     0.00   42657.18  fft
0.00 426.57   0.00  10     0.00   42657.18  fft3d.main
0.00 426.57   0.00   1     0.00  426572.70  main

Call graph:
index  %time     self  children       name
------------------------------------------------------------
[  1]  100.0     0.00   426.57        main [1]

0.00     0.00            buildNList [8]
0.00     0.00            exchange [7]
0.00   426.57            fft [2]
0.00     0.00            integrate [10]
0.00     0.00            ljForce [9]

------------------------------------------------------------
0.00   426.57            main [1]

[  2]  100.0     0.00   426.57        fft [2]
0.00   426.57            fft3d.main [3]

------------------------------------------------------------
0.00   426.57            fft [2]

[  3]  100.0     0.00   426.57        fft3d.main [3]
42.78     0.00            fft3d.exchange [5]

370.76     0.00            fft3d.localFFT [4]
13.03     0.00            fft3d.shuffle [6]

------------------------------------------------------------
0.00   426.57            fft3d.main [3]

[  4]   86.9    370.76     0.00        fft3d.localFFT [4]
------------------------------------------------------------

0.00   426.57            fft3d.main [3]
[  5]   10.0    42.78     0.00        fft3d.exchange [5]
------------------------------------------------------------

0.00   426.57            fft3d.main [3]
[  6]    3.1    13.03     0.00        fft3d.shuffle [6]
------------------------------------------------------------

0.00   426.57            main [1]
[  7]    0.0     0.00     0.00        exchange [7]
------------------------------------------------------------

0.00   426.57            main [1]
[  8]    0.0     0.00     0.00        buildNList [8]
------------------------------------------------------------

0.00   426.57            main [1]
[  9]    0.0     0.00     0.00        ljForce [9]
------------------------------------------------------------

0.00   426.57            main [1]
[ 10]    0.0     0.00     0.00        integrate [10]

0% 10% 20% 30%

CalcHourglassControlForElems

CalcFBHourglassForceForElems

IntegrateStressForElems

CalcKinematicsForElems

CalcMonotonicQGradientsForElems

Other Functions

Percentage of Total Runtime

Measured Predicted

Not from gprof
but rather aspen 

performance 
model
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Aspen Model User Queries



Scheduling GPU Offloads with 
Aspen Performance Models
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Should the execution offload kernel to GPU or run on host CPU?

• Intuitively

– When it is ‘small’, run the computation on the 
host CPU, 

– Otherwise, send it to the GPU

– Expense of data movement (twice) and launch 
GPU kernels?

• Depends on architecture

– Simply offloading all computation is not smart

• Portability?

– Need to account for performance, working set 
size, data transfer costs, …



OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC

Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive

Parser

Preprocessor

General

Optimizer

OpenARC

Back-End

Kernels  & 

Host Program

Generator

Device 

Specific 

Optimizer

OpenARC

IR

Kernels for

Target Devices

Host Program

OpenARC

Auto-Tuner

Tuning 

Configuration 

Generator

Search Space

Pruner

CUDA, OpenCL

Libraries

HeteroIR Common Runtime

with Tuning Engine

CUDA

GPU

Altera

FPGA

AMD

GPU

Xeon

Phi

Input C Programs

Feedback

Run

Vetter, 27 Apr 2016 
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Informed Offloading Execution

OpenACC
Application

Aspen 
Model

CPU 
Version

GPU
Version

Execution

Evaluate
Performance 

Model per 
Invocation

CPUGPU
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Matrix Multiply

1E-02

1E-01

1E+00

1E+01

512 768 1024 1280 1536 1792 2048

R
u

n
ti

m
e

 (
se

c)

Matrix Size

Measured CPU

Measured GPU

Aspen CPU

Aspen GPU

Runtime Using
Aspen Prediction

S. Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in Proceedings of the 29th ACM on 

International Conference on Supercomputing. Newport Beach, California, USA: ACM, 2015, pp. 405-14.
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LULESH: Runtime and Working Set Size Predictions



Using Aspen for Distributed 
Workflows
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Aspen allows Multiresolution Modeling

Distributed Scientific Workflows

HPC System

Nodes

Wide-Area 
Networking, Files, 

Many HPC 
systems, and 

Archives

Computation, 
Memory, 

Communication, IO

Computation, 
Memory, Threads

Scenario Scope

S
c
a
le
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Simulation: ACME Workflows

• Accelerated Climate Modeling for Energy 
(ACME)

• Coupled climate models with ocean, land, 
atmosphere and ice

• Climatologies and diagnostics give summaries 
of data

• Each stage of the workflow runs the ACME 
model for a few timesteps—helps keep 
simulations within batch queue limits

• Running on Hopper @ NERSC and Titan @ 
OLCF

...

Year 1-5

Year 6-10

Year 36-40

Climatologies

Climatologies

Climatologies

CADES
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Experimental Data: SNS Workflows

• Spallation Neutron Source

• Parameter sweep of molecular dynamics and neutron scattering

• Used to identify parameters that fit experimental data from SNS

• Currently being used for real science problems

• Large runs use 20 parameter values and require ~400,000 CPU hours

• Running on Hopper @ NERSC and coming to Titan @ ORNL

Parameter

Values

Equlibrate

Stage

Production

Stage

Coherent Incoherent

Post-processing

and Viz

Amber14Amber14 Unpack
Database
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PANORAMA Overview

Infrastructure 

Design

Model Validation

Workflow Execution

Simulation

Anomaly 

Detection and 

Diagnosis

Resource 

Mapping and 

Adaptation

ExoGENI

OLCF

NERSC

Viz

APS

HPSS

VDF

SNS E
S

n
e

t

Workflow

Pegasus Framework

Aspen Modeling Language 

and System

Resources

R
a

w
 a

n
d

 C
o
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e
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d
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n

it
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ri
n

g
 D

a
ta

ESnet 

testbed
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Automatically Generate Aspen from Pegasus DAX;
Use Aspen Predictions to Inform/Monitor Decisions
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Executive Summary

• Both architectures and applications are growing more complex
– Trends dictate that this will get worse, not better

– This complexity creates irregularity in computation, communication, and data movement

• Dynamic resource management is one way to help manage this irregularity
– Need accurate policies to guide resource decisions

– Examples: greedy work stealing, algorithmic, historical, cost models, application specific, etc

• Posit that we can use application-specific performance models to inform scheduling decisions
– Aspen performance modeling language helps create models

– Two recent experiments
• GPU offload

• Distributed scientific workflows

• Q&A
– Can Aspen be accurate enough for these dynamic decisions?

– How can we employ/influence the RT/OS in this process?
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PMES Workshop @ SC16

• https://j.mp/pmes2016

• @SC16

• Position papers due June 17

https://j.mp/pmes2016

