
ORNL is managed by UT-Battelle

for the US Department of Energy

Using Application-Specific
Performance Models to
Inform Dynamic Scheduling

Jeffrey S. Vetter

Seyong Lee, Jeremy Meredith,

and many collaborators

http://ft.ornl.gov vetter@computer.org

Presented to

International Workshop on

Runtime and Operating Systems for

Supercomputers ROSS 2016

1 June 2016

Kyoto

http://ft.ornl.gov/
mailto:vetter@computer.org

66

Executive Summary

• Both architectures and applications are growing more complex
– Trends dictate that this will get worse, not better
– This complexity creates irregularity in computation, communication, and data movement

• Dynamic resource management is one way to help manage this irregularity
– Need accurate policies to guide resource decisions
– Examples: greedy work stealing, algorithmic, historical, cost models, application specific, etc

• Posit that we can use application-specific performance models to inform scheduling
decisions
– Aspen performance modeling language helps create models
– Two recent experiments

• GPU offload

• Distributed scientific workflows

Trends toward Exascale

68

Exascale architecture targets circa 2009
2009 Exascale Challenges Workshop in San Diego

System attributes 2009 “Pre-Exascale” “Exascale”

System peak 2 PF 100-200 PF/s 1 Exaflop/s

Power 6 MW 15 MW 20 MW

System memory 0.3 PB 5 PB 32–64 PB

Storage 15 PB 150 PB 500 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size (nodes) 18,700 500,000 50,000 1,000,000 100,000

Node interconnect BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s

MTTI day O(1 day) O(0.1 day)

Attendees envisioned two possible architectural swim lanes:

1. Homogeneous many-core thin-node system

2. Heterogeneous (accelerator + CPU) fat-node system

69

Contemporary ASCR Computing At a Glance

System attributes
NERSC

Now

OLCF

Now

ALCF

Now
NERSC Upgrade OLCF Upgrade ALCF Upgrades

Planned Installation Edison TITAN MIRA
Cori

2016

Summit

2017-2018

Theta

2016

Aurora

2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 + High

Bandwidth Memory

(HBM)+1.5PB

persistent memory

> 1.74 PB DDR4 +

HBM + 2.8 PB

persistent memory

>480 TB DDR4 +

High Bandwidth

Memory (HBM)

> 7 PB High Bandwidth

On-Package Memory

Local Memory and

Persistent Memory

Node performance (TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors
Intel Ivy

Bridge

AMD

Opteron

Nvidia

Kepler

64-bit

PowerPC

A2

Intel Knights Landing

many core CPUs

Intel Haswell CPU in

data partition

Multiple IBM

Power9 CPUs &

multiple Nvidia

Voltas GPUS

Intel Knights Landing

Xeon Phi many core

CPUs

Knights Hill Xeon Phi

many core CPUs

System size (nodes)
5,600

nodes

18,688

nodes
49,152

9,300 nodes

1,900 nodes in data

partition

~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries
Dual Rail

EDR-IB
Aries

2nd Generation Intel

Omni-Path Architecture

File System

7.6 PB

168 GB/s,

Lustre®

32 PB

1 TB/s,

Lustre®

26 PB

300 GB/s

GPFS™

28 PB

744 GB/s

Lustre®

120 PB

1 TB/s

GPFS™

10PB, 210 GB/s

Lustre initial

150 PB

1 TB/s

Lustre®

Complexity α T

73

74

Complexity is the next major challenge!

• “Exciting” times in computer architecture
– Heterogeneous cores

– Multimode memory systems

– Fused memory systems

– I/O architectures

– Error correction

– Changing system balance

• Uncertainty, Ambiguity
– How do we design future systems so that they are faster than current systems on mission applications?

• Entirely possible that the new system will be slower than the old system!

– How do we provide some level of performance portability for applications teams?

– How do we understand reliability and performance problems?

• Managing complexity is our main challenge!

Performance Prediction with Aspen

76

Example Ad Hoc Model: Latex Equations

77

Example: Ad-Hoc Excel Files

79

Prediction Techniques Ranked

80

Aspen: Abstract Scalable Performance Engineering Notation

Representation in Aspen

• Modular

• Sharable

• Composable

• Reflects prog structure

E.g., MD, UHPC CP 1, Lulesh,

3D FFT, CoMD, VPFFT, …

Source code
Aspen code

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in Proc. SC12.

• Static analysis via compiler,
tools

• Empirical, Historical

• Manual (for future applications)

Model Creation

• Interactive tools for graphs,
queries

• Design space exploration

• Workload Generation

• Feedback to Runtime Systems

Model Uses

Creating an Aspen Model

82

Manual Example of LULESH

83

COMPASS System Overview

source code
Input Program

Analyzer

Aspen machine

model

OpenARC IR

with Aspen

annotations

Aspen IR

Generator

ASPEN IR

Aspen IR

Postprocessor

Aspen

application

model
Aspen

Performance

Prediction

Tools

Program

characteristics

(flops, loads,

stores, etc.)

Runtime

prediction

Optional feedback for advanced users

Other program

analysis

S. Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in ACM International Conference on

Supercomputing (ICS). Newport Beach, California: ACM, 2015, 10.1145/2751205.2751220.

84

MM example generated from COMPASS

85

Example: LULESH (10% of 1 kernel)

kernel IntegrateStressForElems
{

execute [numElem_CalcVolumeForceForElems]
{

loads [((1*aspen_param_int)*8)] from elemNodes as stride(1)
loads [((1*aspen_param_double)*8)] from m_x
loads [((1*aspen_param_double)*8)] from m_y
loads [((1*aspen_param_double)*8)] from m_z
loads [(1*aspen_param_double)] from determ as stride(1)
flops [8] as dp, simd
flops [8] as dp, simd
flops [8] as dp, simd
flops [8] as dp, simd
flops [3] as dp, simd
flops [3] as dp, simd
flops [3] as dp, simd
flops [3] as dp, simd
stores [(1*aspen_param_double)] as stride(0)
flops [2] as dp, simd
stores [(1*aspen_param_double)] as stride(0)
flops [2] as dp, simd
stores [(1*aspen_param_double)] as stride(0)
flops [2] as dp, simd
loads [(1*aspen_param_double)] as stride(0)
stores [(1*aspen_param_double)] as stride(0)
loads [(1*aspen_param_double)] as stride(0)
stores [(1*aspen_param_double)] as stride(0)
loads [(1*aspen_param_double)] as stride(0)
.

- Input LULESH program:

3700 lines of C codes

- Output Aspen model:

2300 lines of Aspen codes

86

Model Validation
FLOPS LOADS STORES

MATMUL 15% <1% 1%

LAPLACE2D 7% 0% <1%

SRAD 17% 0% 0%

JACOBI 6% <1% <1%

KMEANS 0% 0% 8%

LUD 5% 0% 2%

BFS <1% 11% 0%

HOTSPOT 0% 0% 0%

LULESH 0% 0% 0%

0% means that prediction fell between measurements from optimized

and unoptimized runs of the code.

87

Black Box Analytical Modeling

• In some cases, we do not have access to a
white box Aspen performance model

• Using input vector and empirical results, we
can develop Aspen Black Box model

• User provides
– measured runtimes with app/machine

parameters
• e.g. nAtoms, nCores

– template Aspen model with
• application parameters

• unknowns to solve for

– new machine models (if necessary)

• Modeling tool
– Generates symbolic predictions

– Combines with measurements to
generate objective function

– Solves for unknowns in template

– Output: completed app model usable for
predictive behavior

Measured

Application

Runtimes

Aspen

Library

Template

Aspen

App

Model

Aspen

Hardware

Models

Symbolic

Runtime

Equations

Nonlinear

Optimizer
Objective

Function

Aspen Black-box

Modeling Tool

Aspen

Tool

Suite

Runtime /

Threshold

Prediction

s

Application-

Specific

Aspen Model

88

• nAtoms and nTimeSteps defined in template application model and
CSV input data

• nCores defined in machine models and CSV input data

• solves for c and d, filling out a concrete application model for that
problem

• new predictions can still vary nAtoms, nTimeSteps, and nCores

Black Box Modeling Example

model NAMD_Template {

// application parameters

// (defined in the input file)

param nAtoms = 1e6

param nTimeSteps = 100

// solve for these parameters

// (within the given ranges)

param c = 1 in 1 .. 1e18

param d = 1 in 1 .. 1e18

// application behavior:

// execution and control flow

kernel main

{

iterate [nTimeSteps] {

execute {

loads [c * nAtoms^2]

flops [d * nAtoms]

}

}

}

}

model NAMD_Equilibrate {

// NAMD input parameters

param nAtoms = 1e6

param nTimeSteps = 100

// calculation-specific constants

param c = 402.1

param d = 10.95

// NAMD application behavior

kernel main

{

iterate [nTimeSteps] {

execute {

loads [c * nAtoms^2]

flops [d * nAtoms]

}

}

}

}

nAtoms
nTimeStep

s
nCores machine runtime

1e6 100 144 exogeni 384.2

1e6 100 144 hopper 340.1

1e6 150 144 hopper 482.9

+ =

MD template model CSV data file with parameters

and runtimes
Concrete NAMD model

Using an Aspen Model

90

Aspen: Abstract Scalable Performance Engineering Notation

Representation in Aspen

• Modular

• Sharable

• Composable

• Reflects prog structure

E.g., MD, UHPC CP 1, Lulesh,

3D FFT, CoMD, VPFFT, …

Source code
Aspen code

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in Proc. SC12.

• Static analysis via compiler,
tools

• Empirical, Historical

• Manual (for future applications)

Model Creation

• Interactive tools for graphs,
queries

• Design space exploration

• Workload Generation

• Feedback to Runtime Systems

Model Uses

91

View Aspen performance models as normal performance analysis
output with Gprof

Flat profile:

% cum self self total
time sec sec calls ms/call ms/call name

--
86.91 370.76 370.76 30 12358.52 12358.52 fft3d.localFFT
10.03 413.54 42.78 20 2139.09 2139.09 fft3d.exchange
3.06 426.57 13.03 20 651.71 651.71 fft3d.shuffle
0.00 426.57 0.00 10 0.03 0.03 exchange
0.00 426.57 0.00 10 0.03 0.03 buildNList
0.00 426.57 0.00 10 0.01 0.01 ljForce
0.00 426.57 0.00 30 0.00 0.00 integrate
0.00 426.57 0.00 10 0.00 42657.18 fft
0.00 426.57 0.00 10 0.00 42657.18 fft3d.main
0.00 426.57 0.00 1 0.00 426572.70 main

Call graph:
index %time self children name
--
[1] 100.0 0.00 426.57 main [1]

0.00 0.00 buildNList [8]
0.00 0.00 exchange [7]
0.00 426.57 fft [2]
0.00 0.00 integrate [10]
0.00 0.00 ljForce [9]

--
0.00 426.57 main [1]

[2] 100.0 0.00 426.57 fft [2]
0.00 426.57 fft3d.main [3]

--
0.00 426.57 fft [2]

[3] 100.0 0.00 426.57 fft3d.main [3]
42.78 0.00 fft3d.exchange [5]

370.76 0.00 fft3d.localFFT [4]
13.03 0.00 fft3d.shuffle [6]

--
0.00 426.57 fft3d.main [3]

[4] 86.9 370.76 0.00 fft3d.localFFT [4]
--

0.00 426.57 fft3d.main [3]
[5] 10.0 42.78 0.00 fft3d.exchange [5]
--

0.00 426.57 fft3d.main [3]
[6] 3.1 13.03 0.00 fft3d.shuffle [6]
--

0.00 426.57 main [1]
[7] 0.0 0.00 0.00 exchange [7]
--

0.00 426.57 main [1]
[8] 0.0 0.00 0.00 buildNList [8]
--

0.00 426.57 main [1]
[9] 0.0 0.00 0.00 ljForce [9]
--

0.00 426.57 main [1]
[10] 0.0 0.00 0.00 integrate [10]

0% 10% 20% 30%

CalcHourglassControlForElems

CalcFBHourglassForceForElems

IntegrateStressForElems

CalcKinematicsForElems

CalcMonotonicQGradientsForElems

Other Functions

Percentage of Total Runtime

Measured Predicted

Not from gprof
but rather aspen

performance
model

92

Aspen Model User Queries

Scheduling GPU Offloads with
Aspen Performance Models

94

Should the execution offload kernel to GPU or run on host CPU?

• Intuitively

– When it is ‘small’, run the computation on the
host CPU,

– Otherwise, send it to the GPU

– Expense of data movement (twice) and launch
GPU kernels?

• Depends on architecture

– Simply offloading all computation is not smart

• Portability?

– Need to account for performance, working set
size, data transfer costs, …

OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC

Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive

Parser

Preprocessor

General

Optimizer

OpenARC

Back-End

Kernels &

Host Program

Generator

Device

Specific

Optimizer

OpenARC

IR

Kernels for

Target Devices

Host Program

OpenARC

Auto-Tuner

Tuning

Configuration

Generator

Search Space

Pruner

CUDA, OpenCL

Libraries

HeteroIR Common Runtime

with Tuning Engine

CUDA

GPU

Altera

FPGA

AMD

GPU

Xeon

Phi

Input C Programs

Feedback

Run

Vetter, 27 Apr 2016

96

Informed Offloading Execution

OpenACC
Application

Aspen
Model

CPU
Version

GPU
Version

Execution

Evaluate
Performance

Model per
Invocation

CPUGPU

97

Matrix Multiply

1E-02

1E-01

1E+00

1E+01

512 768 1024 1280 1536 1792 2048

R
u

n
ti

m
e

 (
se

c)

Matrix Size

Measured CPU

Measured GPU

Aspen CPU

Aspen GPU

Runtime Using
Aspen Prediction

S. Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in Proceedings of the 29th ACM on

International Conference on Supercomputing. Newport Beach, California, USA: ACM, 2015, pp. 405-14.

98

LULESH: Runtime and Working Set Size Predictions

Using Aspen for Distributed
Workflows

100

Aspen allows Multiresolution Modeling

Distributed Scientific Workflows

HPC System

Nodes

Wide-Area
Networking, Files,

Many HPC
systems, and

Archives

Computation,
Memory,

Communication, IO

Computation,
Memory, Threads

Scenario Scope

S
c
a
le

101

Simulation: ACME Workflows

• Accelerated Climate Modeling for Energy
(ACME)

• Coupled climate models with ocean, land,
atmosphere and ice

• Climatologies and diagnostics give summaries
of data

• Each stage of the workflow runs the ACME
model for a few timesteps—helps keep
simulations within batch queue limits

• Running on Hopper @ NERSC and Titan @
OLCF

...

Year 1-5

Year 6-10

Year 36-40

Climatologies

Climatologies

Climatologies

CADES

102

Experimental Data: SNS Workflows

• Spallation Neutron Source

• Parameter sweep of molecular dynamics and neutron scattering

• Used to identify parameters that fit experimental data from SNS

• Currently being used for real science problems

• Large runs use 20 parameter values and require ~400,000 CPU hours

• Running on Hopper @ NERSC and coming to Titan @ ORNL

Parameter

Values

Equlibrate

Stage

Production

Stage

Coherent Incoherent

Post-processing

and Viz

Amber14Amber14 Unpack
Database

103

PANORAMA Overview

Infrastructure

Design

Model Validation

Workflow Execution

Simulation

Anomaly

Detection and

Diagnosis

Resource

Mapping and

Adaptation

ExoGENI

OLCF

NERSC

Viz

APS

HPSS

VDF

SNS E
S

n
e

t

Workflow

Pegasus Framework

Aspen Modeling Language

and System

Resources

R
a

w
 a

n
d

 C
o

rr
e

la
te

d
 M

o
n

it
o

ri
n

g
 D

a
ta

ESnet

testbed

104

Automatically Generate Aspen from Pegasus DAX;
Use Aspen Predictions to Inform/Monitor Decisions

114

Executive Summary

• Both architectures and applications are growing more complex
– Trends dictate that this will get worse, not better

– This complexity creates irregularity in computation, communication, and data movement

• Dynamic resource management is one way to help manage this irregularity
– Need accurate policies to guide resource decisions

– Examples: greedy work stealing, algorithmic, historical, cost models, application specific, etc

• Posit that we can use application-specific performance models to inform scheduling decisions
– Aspen performance modeling language helps create models

– Two recent experiments
• GPU offload

• Distributed scientific workflows

• Q&A
– Can Aspen be accurate enough for these dynamic decisions?

– How can we employ/influence the RT/OS in this process?

115

• Contributors and Sponsors

– Future Technologies Group: http://ft.ornl.gov

– US Department of Energy Office of Science

• DOE Vancouver Project: https://ft.ornl.gov/trac/vancouver

• DOE Blackcomb Project: https://ft.ornl.gov/trac/blackcomb

• DOE ExMatEx Codesign Center: http://codesign.lanl.gov

• DOE Cesar Codesign Center: http://cesar.mcs.anl.gov/

• DOE Exascale Efforts:
http://science.energy.gov/ascr/research/computer-
science/

– Scalable Heterogeneous Computing Benchmark team:
http://bit.ly/shocmarx

– US National Science Foundation Keeneland Project:
http://keeneland.gatech.edu

– US DARPA

– NVIDIA CUDA Center of Excellence

Acknowledgements

http://ft.ornl.gov/
https://ft.ornl.gov/trac/vancouver
https://ft.ornl.gov/trac/blackcomb
http://codesign.lanl.gov/
http://cesar.mcs.anl.gov/
http://science.energy.gov/ascr/research/computer-science/
http://bit.ly/shocmarx
http://keeneland.gatech.edu/

116

PMES Workshop @ SC16

• https://j.mp/pmes2016

• @SC16

• Position papers due June 17

https://j.mp/pmes2016

