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By 2020

…for 8
billion (4)

Next wave: Cyber physical age

Pervasive 
connectivity

Explosion of 
information

Smart device 
expansion

Internet of Things

(1) IDC “Worldwide Internet of Things (IoT) 2013-2020 forecast” October 2013. (2) IDC "The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things" April 2014 
(3) Global Smart Meter Forecasts, 2012-2020. Smart Grid Insights (Zypryme), November 2013 (4) http://en.wikipedia.org
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The past 60 years
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Architecture walls
Compute
Single-thread performance wall.
Diminishing return of multi-core. 
Chip-edge bandwidth wall 

Storage
HDD/SSD layer is a significant 
performance bottleneck. Prevents 
big data getting closer to compute

Data Movement
Too slow (and cumbersome) for real-time 
access to shared memory  

Memory
DRAM reaching technology scaling wall
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Things are becoming very unbalanced

National Labs plans for leading-edge supercomputer  

2012 2016 2020 2024

Peak 
PFLOP/s 10-20 100-200 500-2000 2000-4000

Memory 
(PB) 0.5-1 5-10 32-64 50-100

Flops/ 
Bytes 5-10 10 - 20 16 - 32 40 - 80

Source: Rick Stevens 
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Architecture of the future: The Machine

Special purpose cores

Photonics

Massive memory pool
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Essential characteristics of The Machine

Converging memory and storage
• Byte-addressable non-volatile memory (NVM) 

replaces hard drives and SSDs
Shared memory pool
• NVM pool is accessible by all compute 

resources
• Optical networking advances provide near-

uniform low latency
• Local memory provides lower latency, high 

performance tier
Heterogeneous compute resources 
distributed closer to data
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Outline

Motivation

The Machine’s memory-centric architecture

Implications for memory-centric operating systems

Implications for systems software

Implications for HPC

Conclusions
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The Machine’s memory-centric 
architecture
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20,000
cores

Moonshot 
47” rack

100TB
Flash

14TB
DRAM

(*)

Today’s trend to rack-scale architectures

Rack is the new unit of deployment in data centers
Pools of disaggregated resources
• Storage, networking and compute
Example: HP Moonshot m800 server cartridge
• Built around TI’s KeyStone II System on Chip (SoC)

– 4 general purpose ARM cores
– 8 accelerated VLIW DSP cores
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Rack-scale computing in 2020?

Today’s rack Hypothetical 2020 rack
# Cores O(10,000) O(100,000)
Memory O(10 TB) O(100 TB)
Storage O(100 TB) 

(flash + SSD + HDD)
O(10-100 PB) 

(NVM)
Bandwidth / server 10 Gbps 1 Tbps

Paolo Costa “Towards Rack-scale Computing: Challenges and Opportunities," Proc. First Intl. Workshop on Rack-scale Computing, 2014. 
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Memory-centric rack-scale architectures

UC Berkeley
Firebox

Intel
Rack Scale

Architecture

HP
The Machine
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Persistent storage will be accessible by load/store

Persistently stores data
Access latencies comparable to DRAM
Byte addressable (load/store) rather than block addressable (read/write)

Flash-backed DRAM

2D and 3D 
Flash

Phase-Change Memory

Spin-Transfer Torque 
MRAM

Resistive RAM
(e.g., Memristor)

ns μs

Latency

Haris Volos, et al. "Aerie: Flexible File-System Interfaces to 
Storage-Class Memory," Proc. EuroSys 2014. 
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Optical networking will make most NVM equidistant

High-radix optical switches enable low-
diameter network topologies
• Pooled NVM will appear at near-uniform low latency

Locality still matters
• Stacking and co-packaging permit node-local 

memory
• Local memory provides lower-latency, higher-

bandwidth performance tier

Example: Micron’s Hybrid 
Memory Cube (HMC)

Source: Micron

Source: J. H. Ahn, et al., “HyperX: topology, routing, and packaging of 
efficient large-scale networks,” Proc. SC, 2009.
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Heterogeneous and decentralized compute

Dark silicon effects
• Microprocessor designs are limited by power, not area

Application functionality will be offloaded
• Functionality migrates from application CPU to accelerators
• Computation moves closer to data

Memory will become more intelligent
• Memory takes active role in protection, allocation, synchronization, resilience, etc.

HP Moonshot 
ProLiant m710

http://download.intel.com/newsroom/kits/core/4thgen/gallery/images/Iris_Pro_Partner.zip
http://download.intel.com/newsroom/kits/core/4thgen/gallery/images/Iris_Pro_Partner.zip
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Implications for memory-centric 
operating systems

P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic, “Beyond processor-centric operating systems,” Proc. Workshop on Hot Topics in Operating 
Systems (HotOS), 2015.
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Linux kernel diagram

System Networking Storage Memory Processing Human interfaceFunctions

System calls Sockets Files and directories Memory access Processes Char devicesUser space interfaces

Proc, sysfs file systems Protocol families Virtual file system Virtual memory Tasks Input subsystemVirtual subsystems

Bus controllers:
PCI, USB

Network cards:
Ethernet, WiFi

Disk controllers:
IDE, SCSI MMU, RAM CPU Display keyboard,

mouse, audioElectronics

Bus drivers Network devices and 
drivers Block devices and drivers Page allocator Interrupts core HI peripherals driversHardware interfaces

System run, modules, 
generic HW access

Protocols:
TCP, UDP, IP

Logical file systems, 
ext2, ext3 Logical memory Scheduler HI class driversLogical

Device model
NFS

Memory mapping
Synchronization

Swap

Page cache
Bridges

Layers

X

X
X
X

NVM

global global

©2007-2009 Constantine Shulyupin http://www.MakeLinux.net/kernel/diagram
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Traditional file systems
Separate storage address space
• Data is copied between storage and DRAM
• Block-level abstraction leads to inefficiencies
Use of page cache leads to extra copies
• True even for memory-mapped I/O
Software layers add overhead

Storage: Disks, SSDs

Traditional FS

Applications

Page cache

Block device

mmap file IO

VFS
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Non-volatile memory aware file systems

Examples
• Linux DAX (pmem.io)

Low overhead access to 
persistent memory
• No page cache
• Direct access with mmap

Leverage hardware 
support for consistency

NVM

Traditional FS

Applications

Page cache

Block device

mmap file IO

NVM FS mmu
mappings

mmap

VFS

file IO

Source: S. R Dulloor, et al. "System Software for Persistent Memory," Proc. EuroSys, 2014. 
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Distribution of memory management functionality

Memory management moves from processor-centric OS to distributed services
• Allocation, protection, synchronization, de/encryption, (de)compression, error handling
• Policy services: quotas, QoS
Cluster: compute SoCs, memory-side controllers, and accelerators
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Example: hierarchical memory allocation
shared memory pool

coarse-grained allocator

fine-
grained

fine-
grained
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Memory error handling
Issue
• As size of memory increases, memory errors will be commonplace, not rare
• Memory interconnect errors (possibly transient) will manifest as memory errors
• Applications and OS must be cope with load/store access to NVM failing

Traditional
• OS memory failures considered unrecoverable, resulting in machine check
• User process with memory errors would be killed

Potential solutions
• Use replication and remapping to survive memory hardware failures
• Adapt traditional mitigation techniques to detect/correct problems transparently
• Use exceptions for memory error reporting, to permit the OS and apps to recover if possible
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Protection and translation
Issue: tension between needs of translation and protection
• Translation should be as efficient as possible via very large pages or direct mapping
• Protection should be very fine-grained (e.g., object metadata)

Traditional
• OS supports multiple page sizes and uses them for both protection and translation
• No “goldilocks” page size due to conflict between translation and protection

Potential solutions
• Decouple translation and protection
• Provide protection by combination of processor-managed MMUs and memory elements
• Explore alternative protection mechanisms (e.g., capabilities, Mondrian memory protection) 
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Coping with volatility in NVM world
Issue
• Components of the memory system continue to be volatile (e.g., caches, store buffers)
• OS and applications need to control data movement between volatile caches and NVM

Traditional
• NVM transactions with undo logging
• ISA support beginning to become available (e.g., Intel clwb, pcommit)

Potential solutions
• Provide “flush-on-failure”: kernel flushes all CPU caches to NVM when failure is imminent
• Employ non-volatile last level cache of processor
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Implications for systems software
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Traditional databases
Example: A database (write) transaction

• Traditional databases struggle 
with big & fast data

• 90% of a database transaction is 
overhead

• Memory-semantics nonvolatile 
memory: up to 10x improvement

Other

Buffer 
manager

Latching

Locking

Logging

Btree 8.1%

21.0%

18.7%

10.2%

29.6%

12.3%

S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker, “OLTP Through the Looking Glass, and What We Found There,” Proc. SIGMOD, 2008.
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NVM-optimized embedded database: FOEDUS

H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. SIGMOD, 2015.

Durable Current

Committed
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Comparison with in-memory DBMS

• Workload: TPC-C Benchmark
• HP Superdome X 

– 16 sockets, 240 cores, 12TB DRAM
• H-Store: main-memory parallel DBMS

• Optimistic concurrency control more 
resilient to contention

• ~100x faster than H-Store 1.E+00

1.E+01
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0 20 40 60
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ug
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 [k
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FOEDUS H-Store

H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. SIGMOD, 2015.
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NVM-aware data serving: distributed hash table
CREW: concurrent reads, exclusive write

Each server owns write permission to one region and read permission to whole NVM

CPU

DRAM

I/O CPU

DRAM

I/O … CPU

DRAM

I/O

…

1 2 N

Permissions:
Read-Write = {1}
Read-Only = {1,2,..N}

Data stored in shared NVM

Memory Interconnect

1 2 N
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Per-server network utilization
Yahoo Cloud Serving Benchmark: 0.99 Zipf read workload
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Shared NVRAM eliminates load imbalance

Redis (shared NVRAM)Redis (hashing)

S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile memory in scale-out software,” Proc. 2nd Intl. 
Workshop on Rack-scale Computing (WRSC), 2015.
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NVM-aware data analytics

Accelerating shuffle phase improves overall execution time

PageRank on Twitter graph data set

• Pregel-like graph processing with NVM-based log 
communication

• Bulk synchronous parallel (BSP) compute model
• Senders log updates in NVM, notify receivers

S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile memory in scale-out software,” Proc. 2nd Intl. 
Workshop on Rack-scale Computing (WRSC), 2015.
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Do we need separate data representations?

In-storage durability
+ Separate object and persistent formats
– Programmability and performance issues
– Translation code error-prone and insecure

In-memory durability
+ In-memory objects are durable throughout
+ Byte-addressability simplifies programmability
+ Low load/store latencies offer high performance
– Persistent does not mean consistent!

Serialize

Deserialize

In-memory 
objects File or

database

CPU

Caches

DRAM NVM
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NVM-aware application programming

What if I crash here?
What if I crash here?

Crashes cause corruption, which prevents us from merely restarting the computation

Consider a simple banking program (just two accounts):
double accounts[2];

Between which I want to transfer money. Naïve implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;

accounts[to] += amount;

}

Why can’t I just write my program, and have all my data be persistent?
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Manual solution

• Need code that plays back undo 
log on restart

• Getting this to work with 
threads and locks is very hard

• Really want to optimize it

• Very unlikely application 
programmers will get it right

persistent double accounts[2];
transfer(int from, int to, double amount) {
<save old value of accounts[from] in undo log>;
<flush log entry to NVM>

accounts[from] -= amount;
<save old value of accounts[to] in undo log>;
<flush log entry to NVM>

accounts[to]   += amount;
<flush all other persistent stores to NVRAM>
<clear and flush log>
}
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Our solution: Consistent sections
Provide a construct that atomically updates NVM

• Ensures that updates in 
__atomic block are either 
completely visible after crash or 
not at all

• If updates in __atomic block are 
visible, then so are prior 
updates to persistent memory

persistent double accounts[2];
transfer(int from, int to, double amount) {
__atomic {

accounts[from] -= amount;
accounts[to]   += amount;

}
}

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory Consistency,” Proc. OOPSLA, 2014.
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The Atlas programming model
• Programmer distinguishes persistent and transient data

• Persistent data lives in a “persistent region”
− Mappable into process address space (no DRAM buffers)
− Accessed via CPU loads and stores

• Programmer writes ordinary multithreaded code
− Atlas provides automatic durability support at a fine granularity, complete with recovery code
− Atlas derives durable data consistency from existing concurrency constructs

• Protection against failures
− Process crashes: Works with traditional architectures
− Kernel panics and power failures: Requires NVM and CPU cache flushes

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory Consistency,” Proc. OOPSLA, 2014.

Root

Persistent Region
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Use cases

Replace existing durability support (file/database) with direct load/store of NVM
• Example: OpenLDAP with memory-mapped database
• NVM-based implementation 300x faster than hard disks for series of gets and puts

Enable a new class of applications where in-memory objects are always durable
• Example: durable memcached
• Existing transient cache is persisted in NVM, enabling hot restart
• Overhead of durability is about 60% of total time for series of gets and puts
• Overhead reduction possible for systems that provide flush on failure

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory Consistency,” Proc. OOPSLA, 2014.
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Implications for HPC
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Potential benefits of The Machine for HPC workloads
• Memory is fast

− Application checkpoints will be dramatically faster
− No need to explicit load data from disk
− Faster post-experiment visualization and verification

• Memory is large
− Overcomes challenges of weak scaling at very large scale
− Permits simultaneous execution of many related problem instances
− Uncertainty quantification, comparison of alternatives for optimization, etc.

• Memory is shared
− Shared datasets permit low overhead work stealing – potential solution to static load balancing challenges
− Shared data structures limit wasted capacity for replicating read-only data structures across nodes

How would you leverage The Machine for your applications?
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Wrapping up

The Machine: memory-centric computing
• Fast load/store access to large shared pool of 

non-volatile memory

Many opportunities for software innovation
• Operating systems
• Data stores
• Analytics platforms
• Programming models and tools
• Algorithms
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Website and research papers

For more information...part 1

• http://www.hpl.hp.com/research/systems-research/themachine/ 

• D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory 
Consistency,” Proc. Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA), 2014.

• P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic, “Beyond processor-centric operating 
systems,” Proc. Workshop on Hot Topics in Operating Systems (HotOS), 2015.

• H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. SIGMOD, 2015.
• S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile 

memory in scale-out software,” Proc. Intl. Workshop on Rack-scale Computing (WRSC), 2015.
• H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, M. Swift. "Aerie: Flexible File-

System Interfaces to Storage-Class Memory," Proc. EuroSys, 2014. 
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Videos on The Machine

For more information...part 2

• HP Discover 2014 talks
– HP Labs Director Martin Fink's announcement: https://www.youtube.com/watch?v=Gxn5ru7klUQ
– Kim Keeton’s talk on hardware technologies: https://www.youtube.com/watch?v=J6_xg3mHnng

• HP Discover 2015 talks
– Kim Keeton’s talk on systems software:  https://www.youtube.com/watch?v=WZbPyV5AnKM

• Linaro Connect 2015 talks
– Dejan Milojicic’s keynote: http://connect.linaro.org/hkg15/

https://www.youtube.com/watch?v=Gxn5ru7klUQ
https://www.youtube.com/watch?v=J6_xg3mHnng
https://www.youtube.com/watch?v=WZbPyV5AnKM
http://connect.linaro.org/hkg15/
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