
© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The Machine:
An Architecture for
Memory-centric Computing

Kimberly Keeton
Workshop on Runtime and Operating Systems for Supercomputers (ROSS)
June 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.2

By 2020

…for 8
billion (4)

Next wave: Cyber physical age

Pervasive
connectivity

Explosion of
information

Smart device
expansion

Internet of Things

(1) IDC “Worldwide Internet of Things (IoT) 2013-2020 forecast” October 2013. (2) IDC "The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things" April 2014
(3) Global Smart Meter Forecasts, 2012-2020. Smart Grid Insights (Zypryme), November 2013 (4) http://en.wikipedia.org

200
billion

(1)
IoT
“Things”

30+
billion (2)

Connected
devices

(3)
1
billion

Smart
meters

Internet of people

44 ZB

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.3

The past 60 years

1950s

1960s

1970s

1980s

1990s

2000s

Today

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.4

Architecture walls
Compute
Single-thread performance wall.
Diminishing return of multi-core.
Chip-edge bandwidth wall

Storage
HDD/SSD layer is a significant
performance bottleneck. Prevents
big data getting closer to compute

Data Movement
Too slow (and cumbersome) for real-time
access to shared memory

Memory
DRAM reaching technology scaling wall

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.5

Things are becoming very unbalanced

National Labs plans for leading-edge supercomputer

2012 2016 2020 2024

Peak
PFLOP/s 10-20 100-200 500-2000 2000-4000

Memory
(PB) 0.5-1 5-10 32-64 50-100

Flops/
Bytes 5-10 10 - 20 16 - 32 40 - 80

Source: Rick Stevens

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.6

Architecture of the future: The Machine

Special purpose cores

Photonics

Massive memory pool

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.7

Essential characteristics of The Machine

Converging memory and storage
• Byte-addressable non-volatile memory (NVM)

replaces hard drives and SSDs
Shared memory pool
• NVM pool is accessible by all compute

resources
• Optical networking advances provide near-

uniform low latency
• Local memory provides lower latency, high

performance tier
Heterogeneous compute resources
distributed closer to data

Physical
Server

Physical
Server

SoC

SoC

Local DRAM

Local DRAM

Ne
tw

or
k

SoC

SoC

Local DRAM

Local DRAM

Memory Pool

NVM

NVM

NVM

NVM

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.8

Outline

Motivation

The Machine’s memory-centric architecture

Implications for memory-centric operating systems

Implications for systems software

Implications for HPC

Conclusions

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The Machine’s memory-centric
architecture

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.10

20,000
cores

Moonshot
47” rack

100TB
Flash

14TB
DRAM

(*)

Today’s trend to rack-scale architectures

Rack is the new unit of deployment in data centers
Pools of disaggregated resources
• Storage, networking and compute
Example: HP Moonshot m800 server cartridge
• Built around TI’s KeyStone II System on Chip (SoC)

– 4 general purpose ARM cores
– 8 accelerated VLIW DSP cores

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.11

Rack-scale computing in 2020?

Today’s rack Hypothetical 2020 rack
Cores O(10,000) O(100,000)
Memory O(10 TB) O(100 TB)
Storage O(100 TB)

(flash + SSD + HDD)
O(10-100 PB)

(NVM)
Bandwidth / server 10 Gbps 1 Tbps

Paolo Costa “Towards Rack-scale Computing: Challenges and Opportunities," Proc. First Intl. Workshop on Rack-scale Computing, 2014.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.12

Memory-centric rack-scale architectures

UC Berkeley
Firebox

Intel
Rack Scale

Architecture

HP
The Machine

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.13

Persistent storage will be accessible by load/store

Persistently stores data
Access latencies comparable to DRAM
Byte addressable (load/store) rather than block addressable (read/write)

Flash-backed DRAM

2D and 3D
Flash

Phase-Change Memory

Spin-Transfer Torque
MRAM

Resistive RAM
(e.g., Memristor)

ns μs

Latency

Haris Volos, et al. "Aerie: Flexible File-System Interfaces to
Storage-Class Memory," Proc. EuroSys 2014.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.14

Shared something

Physical
Server

Physical
Server

SoC

SoC

Local DRAM

Local DRAM

Ne
tw

or
k

SoC

SoC

Local DRAM

Local DRAM

Memory Pool

NVM

NVM

NVM

NVM

Shared everything

Ne
tw

or
k

Physical Server

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

Co
he

re
nt

In

te
rc

on
ne

ct
Shared nothing

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

Ne
tw

or
k

Physical
Server

Physical
Server

NVM will become rack-scale pooled resource

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.15

Optical networking will make most NVM equidistant

High-radix optical switches enable low-
diameter network topologies
• Pooled NVM will appear at near-uniform low latency

Locality still matters
• Stacking and co-packaging permit node-local

memory
• Local memory provides lower-latency, higher-

bandwidth performance tier

Example: Micron’s Hybrid
Memory Cube (HMC)

Source: Micron

Source: J. H. Ahn, et al., “HyperX: topology, routing, and packaging of
efficient large-scale networks,” Proc. SC, 2009.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.16

Heterogeneous and decentralized compute

Dark silicon effects
• Microprocessor designs are limited by power, not area

Application functionality will be offloaded
• Functionality migrates from application CPU to accelerators
• Computation moves closer to data

Memory will become more intelligent
• Memory takes active role in protection, allocation, synchronization, resilience, etc.

HP Moonshot
ProLiant m710

http://download.intel.com/newsroom/kits/core/4thgen/gallery/images/Iris_Pro_Partner.zip
http://download.intel.com/newsroom/kits/core/4thgen/gallery/images/Iris_Pro_Partner.zip

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Implications for memory-centric
operating systems

P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic, “Beyond processor-centric operating systems,” Proc. Workshop on Hot Topics in Operating
Systems (HotOS), 2015.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.18

Linux kernel diagram

System Networking Storage Memory Processing Human interfaceFunctions

System calls Sockets Files and directories Memory access Processes Char devicesUser space interfaces

Proc, sysfs file systems Protocol families Virtual file system Virtual memory Tasks Input subsystemVirtual subsystems

Bus controllers:
PCI, USB

Network cards:
Ethernet, WiFi

Disk controllers:
IDE, SCSI MMU, RAM CPU Display keyboard,

mouse, audioElectronics

Bus drivers Network devices and
drivers Block devices and drivers Page allocator Interrupts core HI peripherals driversHardware interfaces

System run, modules,
generic HW access

Protocols:
TCP, UDP, IP

Logical file systems,
ext2, ext3 Logical memory Scheduler HI class driversLogical

Device model
NFS

Memory mapping
Synchronization

Swap

Page cache
Bridges

Layers

X

X
X
X

NVM

global global

©2007-2009 Constantine Shulyupin http://www.MakeLinux.net/kernel/diagram

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.19

Traditional file systems
Separate storage address space
• Data is copied between storage and DRAM
• Block-level abstraction leads to inefficiencies
Use of page cache leads to extra copies
• True even for memory-mapped I/O
Software layers add overhead

Storage: Disks, SSDs

Traditional FS

Applications

Page cache

Block device

mmap file IO

VFS

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.20

Non-volatile memory aware file systems

Examples
• Linux DAX (pmem.io)

Low overhead access to
persistent memory
• No page cache
• Direct access with mmap

Leverage hardware
support for consistency

NVM

Traditional FS

Applications

Page cache

Block device

mmap file IO

NVM FS mmu
mappings

mmap

VFS

file IO

Source: S. R Dulloor, et al. "System Software for Persistent Memory," Proc. EuroSys, 2014.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.21

Distribution of memory management functionality

Memory management moves from processor-centric OS to distributed services
• Allocation, protection, synchronization, de/encryption, (de)compression, error handling
• Policy services: quotas, QoS
Cluster: compute SoCs, memory-side controllers, and accelerators

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.22

Example: hierarchical memory allocation
shared memory pool

coarse-grained allocator

fine-
grained

fine-
grained

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.23

Shared everything
Ne

tw
or

k

Physical Server

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

Co
he

re
nt

In

te
rc

on
ne

ct

Shared nothing

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

Ne
tw

or
k

Physical
Server

Physical
Server

Shared NVM blurs fault domain boundaries

OS OS
Shared something

Physical
Server

Physical
Server

SoC

SoC

Local DRAM

Local DRAM

Ne
tw

or
k

SoC

SoC

Local DRAM

Local DRAM

Memory Pool

NVM

NVM

NVM

NVM

OS

OSOS
x x

x

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.24

Shared everything
Ne

tw
or

k

Physical Server

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

Co
he

re
nt

In

te
rc

on
ne

ct

Shared nothing

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

Ne
tw

or
k

Physical
Server

Physical
Server

Shared NVM blurs fault domain boundaries

OS OS
Shared something

Physical
Server

Physical
Server

SoC

SoC

Local DRAM

Local DRAM

Ne
tw

or
k

SoC

SoC

Local DRAM

Local DRAM

Memory Pool

NVM

NVM

NVM

NVM

OS

OSOS
x NVM

NVM

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.25

Memory error handling
Issue
• As size of memory increases, memory errors will be commonplace, not rare
• Memory interconnect errors (possibly transient) will manifest as memory errors
• Applications and OS must be cope with load/store access to NVM failing

Traditional
• OS memory failures considered unrecoverable, resulting in machine check
• User process with memory errors would be killed

Potential solutions
• Use replication and remapping to survive memory hardware failures
• Adapt traditional mitigation techniques to detect/correct problems transparently
• Use exceptions for memory error reporting, to permit the OS and apps to recover if possible

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.26

Protection and translation
Issue: tension between needs of translation and protection
• Translation should be as efficient as possible via very large pages or direct mapping
• Protection should be very fine-grained (e.g., object metadata)

Traditional
• OS supports multiple page sizes and uses them for both protection and translation
• No “goldilocks” page size due to conflict between translation and protection

Potential solutions
• Decouple translation and protection
• Provide protection by combination of processor-managed MMUs and memory elements
• Explore alternative protection mechanisms (e.g., capabilities, Mondrian memory protection)

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.27

Coping with volatility in NVM world
Issue
• Components of the memory system continue to be volatile (e.g., caches, store buffers)
• OS and applications need to control data movement between volatile caches and NVM

Traditional
• NVM transactions with undo logging
• ISA support beginning to become available (e.g., Intel clwb, pcommit)

Potential solutions
• Provide “flush-on-failure”: kernel flushes all CPU caches to NVM when failure is imminent
• Employ non-volatile last level cache of processor

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Implications for systems software

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.29

Traditional databases
Example: A database (write) transaction

• Traditional databases struggle
with big & fast data

• 90% of a database transaction is
overhead

• Memory-semantics nonvolatile
memory: up to 10x improvement

Other

Buffer
manager

Latching

Locking

Logging

Btree 8.1%

21.0%

18.7%

10.2%

29.6%

12.3%

S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker, “OLTP Through the Looking Glass, and What We Found There,” Proc. SIGMOD, 2008.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.30

NVM-optimized embedded database: FOEDUS

H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. SIGMOD, 2015.

Durable Current

Committed

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.31

Comparison with in-memory DBMS

• Workload: TPC-C Benchmark
• HP Superdome X

– 16 sockets, 240 cores, 12TB DRAM
• H-Store: main-memory parallel DBMS

• Optimistic concurrency control more
resilient to contention

• ~100x faster than H-Store 1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0 20 40 60

Th
ro

ug
hp

ut
 [k

TP
S]

Remote Transactions [%]

FOEDUS H-Store

H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. SIGMOD, 2015.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.32

NVM-aware data serving: distributed hash table
CREW: concurrent reads, exclusive write

Each server owns write permission to one region and read permission to whole NVM

CPU

DRAM

I/O CPU

DRAM

I/O … CPU

DRAM

I/O

…

1 2 N

Permissions:
Read-Write = {1}
Read-Only = {1,2,..N}

Data stored in shared NVM

Memory Interconnect

1 2 N

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.33

Per-server network utilization
Yahoo Cloud Serving Benchmark: 0.99 Zipf read workload

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6 7 8 9 10 11 12

1K
B

re
ad

 lo
ok

up
s

(t
ho

us
an

ds
)

Server number

Client-side hashing Round-robin

Shared NVRAM eliminates load imbalance

Redis (shared NVRAM)Redis (hashing)

S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile memory in scale-out software,” Proc. 2nd Intl.
Workshop on Rack-scale Computing (WRSC), 2015.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.34

NVM-aware data analytics

Accelerating shuffle phase improves overall execution time

PageRank on Twitter graph data set

• Pregel-like graph processing with NVM-based log
communication

• Bulk synchronous parallel (BSP) compute model
• Senders log updates in NVM, notify receivers

S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile memory in scale-out software,” Proc. 2nd Intl.
Workshop on Rack-scale Computing (WRSC), 2015.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.35

Do we need separate data representations?

In-storage durability
+ Separate object and persistent formats
– Programmability and performance issues
– Translation code error-prone and insecure

In-memory durability
+ In-memory objects are durable throughout
+ Byte-addressability simplifies programmability
+ Low load/store latencies offer high performance
– Persistent does not mean consistent!

Serialize

Deserialize

In-memory
objects File or

database

CPU

Caches

DRAM NVM

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.36

NVM-aware application programming

What if I crash here?
What if I crash here?

Crashes cause corruption, which prevents us from merely restarting the computation

Consider a simple banking program (just two accounts):
double accounts[2];

Between which I want to transfer money. Naïve implementation:
transfer(int from, int to, double amount) {

accounts[from] -= amount;

accounts[to] += amount;

}

Why can’t I just write my program, and have all my data be persistent?

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.37

Manual solution

• Need code that plays back undo
log on restart

• Getting this to work with
threads and locks is very hard

• Really want to optimize it

• Very unlikely application
programmers will get it right

persistent double accounts[2];
transfer(int from, int to, double amount) {
<save old value of accounts[from] in undo log>;
<flush log entry to NVM>

accounts[from] -= amount;
<save old value of accounts[to] in undo log>;
<flush log entry to NVM>

accounts[to] += amount;
<flush all other persistent stores to NVRAM>
<clear and flush log>
}

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.38

Our solution: Consistent sections
Provide a construct that atomically updates NVM

• Ensures that updates in
__atomic block are either
completely visible after crash or
not at all

• If updates in __atomic block are
visible, then so are prior
updates to persistent memory

persistent double accounts[2];
transfer(int from, int to, double amount) {
__atomic {

accounts[from] -= amount;
accounts[to] += amount;

}
}

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory Consistency,” Proc. OOPSLA, 2014.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.39

The Atlas programming model
• Programmer distinguishes persistent and transient data

• Persistent data lives in a “persistent region”
− Mappable into process address space (no DRAM buffers)
− Accessed via CPU loads and stores

• Programmer writes ordinary multithreaded code
− Atlas provides automatic durability support at a fine granularity, complete with recovery code
− Atlas derives durable data consistency from existing concurrency constructs

• Protection against failures
− Process crashes: Works with traditional architectures
− Kernel panics and power failures: Requires NVM and CPU cache flushes

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory Consistency,” Proc. OOPSLA, 2014.

Root

Persistent Region

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.40

Use cases

Replace existing durability support (file/database) with direct load/store of NVM
• Example: OpenLDAP with memory-mapped database
• NVM-based implementation 300x faster than hard disks for series of gets and puts

Enable a new class of applications where in-memory objects are always durable
• Example: durable memcached
• Existing transient cache is persisted in NVM, enabling hot restart
• Overhead of durability is about 60% of total time for series of gets and puts
• Overhead reduction possible for systems that provide flush on failure

D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory Consistency,” Proc. OOPSLA, 2014.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Implications for HPC

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.42

Potential benefits of The Machine for HPC workloads
• Memory is fast

− Application checkpoints will be dramatically faster
− No need to explicit load data from disk
− Faster post-experiment visualization and verification

• Memory is large
− Overcomes challenges of weak scaling at very large scale
− Permits simultaneous execution of many related problem instances
− Uncertainty quantification, comparison of alternatives for optimization, etc.

• Memory is shared
− Shared datasets permit low overhead work stealing – potential solution to static load balancing challenges
− Shared data structures limit wasted capacity for replicating read-only data structures across nodes

How would you leverage The Machine for your applications?

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.43

Wrapping up

The Machine: memory-centric computing
• Fast load/store access to large shared pool of

non-volatile memory

Many opportunities for software innovation
• Operating systems
• Data stores
• Analytics platforms
• Programming models and tools
• Algorithms

Physical
Server

Physical
Server

SoC

SoC

Local DRAM

Local DRAM

Ne
tw

or
k

SoC

SoC

Local DRAM

Local DRAM

Memory Pool

NVM

NVM

NVM

NVM

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.44

Website and research papers

For more information...part 1

• http://www.hpl.hp.com/research/systems-research/themachine/

• D. Chakrabarti, H. Boehm and K. Bhandari. “Atlas: Leveraging Locks for Non-volatile Memory
Consistency,” Proc. Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA), 2014.

• P. Faraboschi, K. Keeton, T. Marsland, D. Milojicic, “Beyond processor-centric operating
systems,” Proc. Workshop on Hot Topics in Operating Systems (HotOS), 2015.

• H. Kimura, “FOEDUS: OLTP engine for a thousand cores and NVRAM,” Proc. SIGMOD, 2015.
• S. Novakovic, K. Keeton, P. Faraboschi, R. Schreiber, E. Bugnion. “Using shared non-volatile

memory in scale-out software,” Proc. Intl. Workshop on Rack-scale Computing (WRSC), 2015.
• H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, M. Swift. "Aerie: Flexible File-

System Interfaces to Storage-Class Memory," Proc. EuroSys, 2014.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.45

Videos on The Machine

For more information...part 2

• HP Discover 2014 talks
– HP Labs Director Martin Fink's announcement: https://www.youtube.com/watch?v=Gxn5ru7klUQ
– Kim Keeton’s talk on hardware technologies: https://www.youtube.com/watch?v=J6_xg3mHnng

• HP Discover 2015 talks
– Kim Keeton’s talk on systems software: https://www.youtube.com/watch?v=WZbPyV5AnKM

• Linaro Connect 2015 talks
– Dejan Milojicic’s keynote: http://connect.linaro.org/hkg15/

https://www.youtube.com/watch?v=Gxn5ru7klUQ
https://www.youtube.com/watch?v=J6_xg3mHnng
https://www.youtube.com/watch?v=WZbPyV5AnKM
http://connect.linaro.org/hkg15/

	The Machine: �An Architecture for Memory-centric Computing
	Next wave: Cyber physical age
	The past 60 years
	Architecture walls
	Things are becoming very unbalanced
	Architecture of the future: The Machine
	Essential characteristics of The Machine
	Outline
	The Machine’s memory-centric architecture
	Today’s trend to rack-scale architectures
	Rack-scale computing in 2020?
	Memory-centric rack-scale architectures
	Persistent storage will be accessible by load/store
	NVM will become rack-scale pooled resource
	Optical networking will make most NVM equidistant
	Heterogeneous and decentralized compute
	Implications for memory-centric operating systems
	Linux kernel diagram
	Traditional file systems
	Non-volatile memory aware file systems
	Distribution of memory management functionality
	Example: hierarchical memory allocation
	Shared NVM blurs fault domain boundaries
	Shared NVM blurs fault domain boundaries
	Memory error handling
	Protection and translation
	Coping with volatility in NVM world
	Implications for systems software
	Traditional databases
	NVM-optimized embedded database: FOEDUS
	Comparison with in-memory DBMS
	NVM-aware data serving: distributed hash table
	Per-server network utilization
	NVM-aware data analytics
	Do we need separate data representations?
	NVM-aware application programming
	Manual solution
	Our solution: Consistent sections
	The Atlas programming model
	Use cases
	Implications for HPC
	Potential benefits of The Machine for HPC workloads
	Wrapping up
	For more information...part 1
	For more information...part 2

