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Motivation

1 Modern parallel computer systems are becoming extremely complex
due to network topologies, hierarchical storage systems,
heterogeneous processing units, etc.

2 Obtaining the best performance is challenging.

3 Moreover, multiple configurations for the same application.
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Introspection and Adaptivity

General Observation

Configurations of tunable parameters in the runtime system and
applications significantly affect the performance.

Top Ten Exascale Research Challenges in DOE Report

”Introspection and automatic adaptation is listed as significant research
topic to achieve the performance goal on exascale computers.”

Statement

This work addresses the problem of how to improve both parallel
programming productivity and performance by letting applications/runtime
expose tunable parameters and letting the control system figure out the
optimal configurations of these parameters.
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Related work

Autotuning frameworks : generate multiple implementations (FFTW)

Autopilot[Ribler et al.(1998)]: fuzzy logic rules, grid applications,
resource managements

MATE [Morajko 2006] : fully automatic tuning, performance model

Active Harmony[Chung and Hollingsworth(2006)] : heuristic
algorithms

SEEC: A General and Extensible Framework for Self-Aware
Computing[Henry Homann (2010,2011,2013)]
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Our Approach

HPC applications on large scale

Not rely on performance models

Richer set of tunable parameters due to the powerful intelligent
runtime system

Not only application configurations are tunned, but also the runtime
system itself

Automatic performance analysis accelerates steering
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Outline

Overview of PICS framework

Control points in the runtime system and applications

Automatic performance analysis to accelerate steering

APIs implemented in Charm++

Results of benchmarks and applications

Yanhua Sun Parallel Programming Laboratory, UIUC 6/25



Overview of PICS framework
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Control Points

Control points

Control points are tunable parameters for application and runtime to
interact with control system. First proposed in Dooley’s research.

1 Name, Values : default, min, max

2 Movement unit: +1,×2
3 Effects, directions

Degree of parallelism
Grainsize
Priority
Memory usage
GPU load
Message size
Number of messages
other effects
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Application and Runtime Control Points

Application

1 Application specific control points provided by users

2 Applications should be able to reconfigure to use new values

Runtime
1 Traditionally, configurations for the runtime system do not change

2 Configurations for the runtime system itself should be tunable

1 Registered by runtime itself

2 Requires no change from applications

3 Affect all applications
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Observe Program Behaviors

Record all events

Events : begin idle, end idle
Functions: name, begin execution, end execution
Communication : message creation, size, source/destination
Hardware counters

Module link, no source code modification

Performance summary data
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Automatically Analyze the Performance

Many control points are registered. How to reduce the search space?

Performance Analysis - Identify Program Problems

Decomposition

Mapping

Scheduling
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Decomposition Characteristics
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Mapping Characteristics

Mapping problem?

load imbalance

too  much
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 on one PE

Communica t ion  t ime  >>

 LogP model time

too  much externa l
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Load
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Scheduling Characteristics

scheduling problem?

Critical tasks 

a re  de layed

Prior i t ize  the tasks
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Other Characteristics

other  problems?
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Correlate Performance with Control Points
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Correlate Performance with Control Points

Traverse the tree using the performance summary results

performance results ⇒ solutions

solution ⇒ effect of control points

What control points to tune, in which direction!

How much?

grainsize : MaxObjLoad
AvgLoad

Feed results into the control points database
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Control System APIs

Implemented in Charm++, over-decomposition, asynchronous,
message-driven model. (http://charm.cs.uiuc.edu/)

t y p ed e f s t r u c t C o n t r o l P o i n t t
{

cha r name [ 3 0 ] ;
enum TP DATATYPE data type ;
doub l e d e f a u l tV a l u e ;
doub l e c u r r e n tVa l u e ;
doub l e minValue ;
doub l e maxValue ;
doub l e be s tVa l u e ;
doub l e moveUnit ;
i n t moveOP ;
i n t e f f e c t ;
i n t e f f e c t D i r e c t i o n ;
i n t s t r a t e g y ;
i n t entryEP ;
i n t ob j e c t ID ;

} Con t r o lPo i n t ;
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APIs for applications

vo i d r e g i s t e r C o n t r o l P o i n t ( Con t r o lPo i n t ∗ tp ) ;

v o i d s t a r t S t e p ( ) ;
v o i d endStep ( ) ;

doub l e getTunedParameter ( con s t cha r ∗name , boo l ∗ v a l i d ) ;

Yanhua Sun Parallel Programming Laboratory, UIUC 19/25



Experimental Results of Benchmarks and Applications

1 Control points

2 Performance problems

3 Bluegene/Q machine, Cray XE6 machine
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Tuning Message Pipeline

Control point: number of pipeline messages
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Figure: Tuning the number of pipeline messages
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Communication Bottleneck in ChaNGa

Control points: number of mirrors
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Message Compression

Control points: compression algorithm for each type message
Runtime control points
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Figure: Steering the compression algorithm for all-to-all benchmark
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Jacobi3d Performance Steering

Control Points: sub-block size in each dimension
Three control points
Cache miss rate, high idle suggest decreasing sub-block size
Overhead
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Conclusion

Introspective control system is required to improve productivity and
performance

Automatic performance analysis helps guide performance steering

Steering both runtime system and applications are important

Implemented the system based on Charm++ programming model
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