
PICS - a Performance-analysis-based Introspective
Control System to Steer Parallel Applications

Yanhua Sun, Jonathan Lifflander, Laxmikant V. Kalé

Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

sun51@illinois.edu

June 10, 2014

Yanhua Sun Parallel Programming Laboratory, UIUC 1/25

Motivation

1 Modern parallel computer systems are becoming extremely complex
due to network topologies, hierarchical storage systems,
heterogeneous processing units, etc.

2 Obtaining the best performance is challenging.

3 Moreover, multiple configurations for the same application.

 512

 1 2 4 8 16 32 64

ti
m

e(
u
s)

Number of messages

time of using different number of messages to send data

1M (f:0.03125)

Yanhua Sun Parallel Programming Laboratory, UIUC 2/25

Motivation

1 Modern parallel computer systems are becoming extremely complex
due to network topologies, hierarchical storage systems,
heterogeneous processing units, etc.

2 Obtaining the best performance is challenging.

3 Moreover, multiple configurations for the same application.

 512

 1 2 4 8 16 32 64

ti
m

e(
u
s)

Number of messages

time of using different number of messages to send data

1M (f:0.03125)

Yanhua Sun Parallel Programming Laboratory, UIUC 2/25

Introspection and Adaptivity

General Observation

Configurations of tunable parameters in the runtime system and
applications significantly affect the performance.

Top Ten Exascale Research Challenges in DOE Report

”Introspection and automatic adaptation is listed as significant research
topic to achieve the performance goal on exascale computers.”

Statement

This work addresses the problem of how to improve both parallel
programming productivity and performance by letting applications/runtime
expose tunable parameters and letting the control system figure out the
optimal configurations of these parameters.

Yanhua Sun Parallel Programming Laboratory, UIUC 3/25

Introspection and Adaptivity

General Observation

Configurations of tunable parameters in the runtime system and
applications significantly affect the performance.

Top Ten Exascale Research Challenges in DOE Report

”Introspection and automatic adaptation is listed as significant research
topic to achieve the performance goal on exascale computers.”

Statement

This work addresses the problem of how to improve both parallel
programming productivity and performance by letting applications/runtime
expose tunable parameters and letting the control system figure out the
optimal configurations of these parameters.

Yanhua Sun Parallel Programming Laboratory, UIUC 3/25

Related work

Autotuning frameworks : generate multiple implementations (FFTW)

Autopilot[Ribler et al.(1998)]: fuzzy logic rules, grid applications,
resource managements

MATE [Morajko 2006] : fully automatic tuning, performance model

Active Harmony[Chung and Hollingsworth(2006)] : heuristic
algorithms

SEEC: A General and Extensible Framework for Self-Aware
Computing[Henry Homann (2010,2011,2013)]

Yanhua Sun Parallel Programming Laboratory, UIUC 4/25

Our Approach

HPC applications on large scale

Not rely on performance models

Richer set of tunable parameters due to the powerful intelligent
runtime system

Not only application configurations are tunned, but also the runtime
system itself

Automatic performance analysis accelerates steering

Yanhua Sun Parallel Programming Laboratory, UIUC 5/25

Outline

Overview of PICS framework

Control points in the runtime system and applications

Automatic performance analysis to accelerate steering

APIs implemented in Charm++

Results of benchmarks and applications

Yanhua Sun Parallel Programming Laboratory, UIUC 6/25

Overview of PICS framework

Performance
instrumenta/on

Automa/c performance
analysis

Run/me control
points

Run/me
reconfigura/on

Controller

Mini apps Real‐world
applica/ons

Applica/on
control points

Applica/on
reconfigura/on

PICS

Adap/ve run/me system

applica/ons

Performance
 data

Expert
knowledge
rules

Yanhua Sun Parallel Programming Laboratory, UIUC 7/25

Control Points

Control points

Control points are tunable parameters for application and runtime to
interact with control system. First proposed in Dooley’s research.

1 Name, Values : default, min, max

2 Movement unit: +1,×2
3 Effects, directions

Degree of parallelism
Grainsize
Priority
Memory usage
GPU load
Message size
Number of messages
other effects

Yanhua Sun Parallel Programming Laboratory, UIUC 8/25

Application and Runtime Control Points

Application

1 Application specific control points provided by users

2 Applications should be able to reconfigure to use new values

Runtime
1 Traditionally, configurations for the runtime system do not change

2 Configurations for the runtime system itself should be tunable

1 Registered by runtime itself

2 Requires no change from applications

3 Affect all applications

Yanhua Sun Parallel Programming Laboratory, UIUC 9/25

Observe Program Behaviors

Record all events

Events : begin idle, end idle
Functions: name, begin execution, end execution
Communication : message creation, size, source/destination
Hardware counters

Module link, no source code modification

Performance summary data

Yanhua Sun Parallel Programming Laboratory, UIUC 10/25

Automatically Analyze the Performance

Many control points are registered. How to reduce the search space?

Performance Analysis - Identify Program Problems

Decomposition

Mapping

Scheduling

Yanhua Sun Parallel Programming Laboratory, UIUC 11/25

Automatically Analyze the Performance

Many control points are registered. How to reduce the search space?
Performance Analysis - Identify Program Problems

Decomposition

Mapping

Scheduling

Yanhua Sun Parallel Programming Laboratory, UIUC 11/25

Decomposition Characteristics

Decomposit ion

 problem?

High cache miss rate

(1)too big

en t ry me thod

Bytes per

message low

too much

communicat ion

 on one object

Decrease

grain size

(2)too big

single object

(3) too much

critical path

(4)too few objects

per PE

Increase

grain size
Replicate the objects

Yanhua Sun Parallel Programming Laboratory, UIUC 12/25

Mapping Characteristics

Mapping problem?

load imbalance

too much

communicat ion

 on one PE

Communica t ion t ime >>

 LogP model time

too much externa l

communicat ion

Load

balancer

Remap

Topology aware mapping

Yanhua Sun Parallel Programming Laboratory, UIUC 13/25

Scheduling Characteristics

scheduling problem?

Critical tasks

a re de layed

Prior i t ize the tasks

Yanhua Sun Parallel Programming Laboratory, UIUC 14/25

Other Characteristics

other problems?

Bytes per

message low

Reduction

broadcas t
Long latency

Aggregate

Message
Collectives

Compress

m e s s a g e

Yanhua Sun Parallel Programming Laboratory, UIUC 15/25

Correlate Performance with Control Points

Performance

summary

CPU Util ization > 90% O v e r h e a d > 1 0 % Idle >10%

Sequent ia l

performance?

Cache Miss

 > 1 0 %

Decrease

grain size

Small

en t ry me thods

Small Bytes

pe r message

Increase

grain size

Decomposit ion

 problem?
Mapping problem? Scheduling problem?Others?

Longer

e n t r y

 m e t h o d

Larger

single

 object

Long

critical

 p a t h

Few

objects

per PE

Large

communicat ion

 on one object

Decrease

grain size

Load imbalance

Large

communicat ion

 on one PE

Communicat ion

 t i m e > >

 model t ime

Large

ex te rna l

communicat ion

Load

balancer

Remap
Compress

m e s s a g e

Critical

t a s k s

are de layed

Prior i t ize the tasks

Large Bytes

pe r message

Long reduction

broadcas t

Long latency

for big msgs

Increase

aggrega t ion

threshold

Decrease

aggrega t ion

 threshold

Collectives Replicate objects Topology aware mapping

One box can have multiple children

One egg can have multiple parents

Yanhua Sun Parallel Programming Laboratory, UIUC 16/25

Correlate Performance with Control Points

Traverse the tree using the performance summary results

performance results ⇒ solutions

solution ⇒ effect of control points

What control points to tune, in which direction!

How much?

grainsize : MaxObjLoad
AvgLoad

Feed results into the control points database

Yanhua Sun Parallel Programming Laboratory, UIUC 17/25

Control System APIs

Implemented in Charm++, over-decomposition, asynchronous,
message-driven model. (http://charm.cs.uiuc.edu/)

t y p ed e f s t r u c t C o n t r o l P o i n t t
{

cha r name [3 0] ;
enum TP DATATYPE data type ;
doub l e d e f a u l tV a l u e ;
doub l e c u r r e n tVa l u e ;
doub l e minValue ;
doub l e maxValue ;
doub l e be s tVa l u e ;
doub l e moveUnit ;
i n t moveOP ;
i n t e f f e c t ;
i n t e f f e c t D i r e c t i o n ;
i n t s t r a t e g y ;
i n t entryEP ;
i n t ob j e c t ID ;

} Con t r o lPo i n t ;

Yanhua Sun Parallel Programming Laboratory, UIUC 18/25

APIs for applications

vo i d r e g i s t e r C o n t r o l P o i n t (Con t r o lPo i n t ∗ tp) ;

v o i d s t a r t S t e p () ;
v o i d endStep () ;

doub l e getTunedParameter (con s t cha r ∗name , boo l ∗ v a l i d) ;

Yanhua Sun Parallel Programming Laboratory, UIUC 19/25

Experimental Results of Benchmarks and Applications

1 Control points

2 Performance problems

3 Bluegene/Q machine, Cray XE6 machine

Yanhua Sun Parallel Programming Laboratory, UIUC 20/25

Tuning Message Pipeline

Control point: number of pipeline messages

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80
 0

 2

 4

 6

 8

 10

 12

 14

 16
tim

es
te

p(
m

s/
st

ep
)

nu
m

be
r o

f p
ip

el
in

e
m

es
sa

ge
s

step

timestep(less work)
timestep(more work)

pipeline(less work)
pipeline(more work)

Figure: Tuning the number of pipeline messages

Yanhua Sun Parallel Programming Laboratory, UIUC 21/25

Communication Bottleneck in ChaNGa

Control points: number of mirrors

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 5 10 15 20 25

s/
st

ep

steps

tune mirrors with PICS
no mirrors

Figure: Time cost of calculating gravity for various mirrors and no mirror on 16k
cores on Blue Gene/Q

Yanhua Sun Parallel Programming Laboratory, UIUC 22/25

Message Compression

Control points: compression algorithm for each type message
Runtime control points

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60

tim
es

te
p(

m
s/

st
ep

)

step

r1=0.1, r2=1.0

Figure: Steering the compression algorithm for all-to-all benchmark

Yanhua Sun Parallel Programming Laboratory, UIUC 23/25

Jacobi3d Performance Steering

Control Points: sub-block size in each dimension
Three control points
Cache miss rate, high idle suggest decreasing sub-block size
Overhead

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30 35 40

tim
es

te
p(

m
s/

st
ep

)

step

total time
idle time
cpu time

runtime overhead

Figure: Jacobi3d performance steering on 64 cores for problem of
1024*1024*1024

Yanhua Sun Parallel Programming Laboratory, UIUC 24/25

Conclusion

Introspective control system is required to improve productivity and
performance

Automatic performance analysis helps guide performance steering

Steering both runtime system and applications are important

Implemented the system based on Charm++ programming model

Acknowledgment

This work was supported in part by NIH Grant 9P41GM104601, Center for
Macromolecular Modeling and Bioinformatics. It was also supported in
part by DOE DE-AC02-06CH11357 Argo Project. This research used
resources of the Argonne Leadership Computing Facility at Argonne
National Laboratory.

Yanhua Sun Parallel Programming Laboratory, UIUC 25/25

