
Revisiting Virtual Memory for High Performance

Computing on Manycore Architectures:

A Hybrid Segmentation Kernel Approach

Yuki Soma, Balazs Gerofi, Yutaka Ishikawa

1 ROSS'14, Munich

Agenda

2

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Two Types of Virtual Memory

3

Paging Segmentation

Is Paging Really Better?

Completely ignored today!

ROSS'14, Munich

Cost of paging is high

4

 Paging degrades performance

 Accounts for 50% of execution time [McCurdy et al., 08]

 Paging costs energy

 Accounts for 3-14% of CPU core power [Sodani, 11]

 It will get higher in the future!

 Emergence of data-centric workloads [Ranganathan, 11]

 Manycore trend -> TLB shootdown

 Invalidation of TLBs by software to keep TLBs consistent

 Over 10% (tens of cores) at some app.s [Romanescu et al, 10]

 ROSS'14, Munich

a segment

Usage of Segmentation in x86

5

va

pa from register

Physical Address Space

ROSS'14, Munich

Usage of Segmentation in x86

6

Physical Address Space

Code

Data

Stack

ROSS'14, Munich

Agenda

7

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Hybrid Approach

8

 Our Approach: Mix the two mechanisms

 Paging/Segmentation can be set at each core

independently in x86

 Segmentation kernel is too small to handle all system calls

Paging kernel

Many-core CPU (e.g., Xeon Phi)

Segmentation kernel

HPC application Delegation
process

System call offloading

ROSS'14, Munich

Memory mapping

9

 Contiguous spaces are reserved as segments

 For the segmentation kernel and applications

 Also for the communication between the two kernels

 Other parts are used only by paging kernel

Physical Address Space Contiguous space

Used by segmentation kernel

Used by paging kernel

Can also be accessed by paging kernel

ROSS'14, Munich

Delegation Program

10

 Executed at paging cores

 Deploys the application to segmentation kernel

 Waits for system call offloading

Paging kernel

Many-core CPU (e.g., Xeon Phi)

Segmentation kernel

Delegation
process

Application
(parameter)

ROSS'14, Munich

Flow Chart of Execution

11

Paging kernel Segmentation kernel

CPU core X CPU core Y

Reserve and mmap()
physical ranges of app.

Deploy application

Execu
tin

g
ap

p
licatio

n

Start of delegation process

w
ait

w
ait

tim
e

ROSS'14, Munich

Flow Chart of Execution

12

Paging kernel Segmentation kernel

Delegate system call

Perfo
rm

system

 call Return

w
ait

w
ait

w
ait Notify exit

CPU core X CPU core Y

tim
e

restart

ROSS'14, Munich

Advantage

13

 Completely eliminates paging cost

 Page walk (address translation) cost

 Overhead to TLB shootdown

 TLB power consumption…

 OS kernel can still use paging features

 Implementation is not so difficult

 We can use system call handlers in paging kernel’s code

ROSS'14, Munich

Limitation

14

 ≒ Limitation of segmentation (for applications)

 We can’t change the size of (data) segment

 Internal memory fragmentation

 No access control (only read/write for data segment)

 Characteristics of applications are important

 No too complicated memory (de)allocation patterns

 No need of access control

ROSS'14, Munich

Restrictions of Implementation

15

 We had to use 32 bit mode!

 Segmentation is not fully supported in x86’s 64 bit mode

 ⇒ 32-bit segmentation kernel & 64-bit paging kernel

 Memory usage ≦ 4GB

 Currently few system calls are supported

 e.g. neither fork() nor clone() are supported

ROSS'14, Munich

McKernel

16

 Used as the paging kernel (running on one core)

 A light-weight kernel for manycore architecture

 Developed by U-Tokyo, RIKEN AICS, Hitachi, NEC, and Fujitsu

 Running with the help of host Linux

 Program execution on McKernel through host Linux

 System call delegation to host Linux

Xeon Phi

McKernel

 IHK

Host CPU

Linux

 IHK

IKC

ROSS'14, Munich

IKC: Inter Kernel Communication

IHK: Interface for Heterogeneous Kernels

Two system calls added to McKernel

17

 These are called by the delegation process

 init_core()

1. Boot segmentation cores

2. Reserve & mmap() contiguous address space

 load_core() (the main part of delegation process)

1. Load the binary of the application into the reserved area

2. Start the application and wait

3. Perform delegated system calls

4. Exit when the application exits

ROSS'14, Munich

Agenda

18

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Evaluation

19

 RandomAccess in the HPC Challenge benchmark

 Our Approach vs. McKernel with 4K/2MB pages

 Codes are almost equivalent at binary level

 Graph500

 Our Approach vs. MPSS Linux with 4K/2MB pages

 Codes are very different at binary level

 Of course the same source code

 i.e. maximum load/store size, special instructions

 Both of them are executed on single thread

ROSS'14, Munich

RandomAccess

20

90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

200%

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

1
2

8
M

2
5

6
M

5
1

2
M 1
G

2
G

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

o

f
se

gm
e

n
ta

ti
o

n

Memory size

to 2MB to 4kB

b
e
tt

e
r

ROSS'14, Munich

Graph500

21

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

21 22 23 24 25

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

o

f
se

gm
e

n
ta

ti
o

n
 (

B
FS

 s
e

ar
ch

)

Graph SCALE (size = 2^SCALE)

to 2MB (MPSS Linux)

to 4kB (MPSS Linux)b
e
tt

e
r

ROSS'14, Munich

Agenda

22

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Related Work

23

 Direct segment [Basu et al, 13]

 New hardware to combine paging and segmentation

 They only give performance estimation

 FusedOS [Park et al, 12]

 Applications run on a light-weight kernel

 with system call offloading to Linux

 Not address the TLB issues

 Other research on paging

 Not eliminate paging cost completely

ROSS'14, Munich

Agenda

24

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Conclusion

25

 Hybrid kernel approach on manycore architecture

 Most cores are in segmentation, some cores are in paging

 Applications runs over segmentation

 System call offloading to paging kernel

 It gets 81% (4KB page) and 9% (2MB page)

improvement compared to a OS based on paging

 Graph500

 We encourage hardware designers to consider full

support of segmentation in x86 64-bit mode!

ROSS'14, Munich

Future Work

26

 Support for multi-threading

 Evaluation in terms of OS noise

 Reduction of OS noise -> performance predictability?

ROSS'14, Munich

