
Revisiting Virtual Memory for High Performance

Computing on Manycore Architectures:

A Hybrid Segmentation Kernel Approach

Yuki Soma, Balazs Gerofi, Yutaka Ishikawa

1 ROSS'14, Munich

Agenda

2

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Two Types of Virtual Memory

3

Paging Segmentation

Is Paging Really Better?

Completely ignored today!

ROSS'14, Munich

Cost of paging is high

4

 Paging degrades performance

 Accounts for 50% of execution time [McCurdy et al., 08]

 Paging costs energy

 Accounts for 3-14% of CPU core power [Sodani, 11]

 It will get higher in the future!

 Emergence of data-centric workloads [Ranganathan, 11]

 Manycore trend -> TLB shootdown

 Invalidation of TLBs by software to keep TLBs consistent

 Over 10% (tens of cores) at some app.s [Romanescu et al, 10]

 ROSS'14, Munich

a segment

Usage of Segmentation in x86

5

va

pa from register

Physical Address Space

ROSS'14, Munich

Usage of Segmentation in x86

6

Physical Address Space

Code

Data

Stack

ROSS'14, Munich

Agenda

7

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Hybrid Approach

8

 Our Approach: Mix the two mechanisms

 Paging/Segmentation can be set at each core

independently in x86

 Segmentation kernel is too small to handle all system calls

Paging kernel

Many-core CPU (e.g., Xeon Phi)

Segmentation kernel

HPC application Delegation
process

System call offloading

ROSS'14, Munich

Memory mapping

9

 Contiguous spaces are reserved as segments

 For the segmentation kernel and applications

 Also for the communication between the two kernels

 Other parts are used only by paging kernel

Physical Address Space Contiguous space

Used by segmentation kernel

Used by paging kernel

Can also be accessed by paging kernel

ROSS'14, Munich

Delegation Program

10

 Executed at paging cores

 Deploys the application to segmentation kernel

 Waits for system call offloading

Paging kernel

Many-core CPU (e.g., Xeon Phi)

Segmentation kernel

Delegation
process

Application
(parameter)

ROSS'14, Munich

Flow Chart of Execution

11

Paging kernel Segmentation kernel

CPU core X CPU core Y

Reserve and mmap()
physical ranges of app.

Deploy application

Execu
tin

g
ap

p
licatio

n

Start of delegation process

w
ait

w
ait

tim
e

ROSS'14, Munich

Flow Chart of Execution

12

Paging kernel Segmentation kernel

Delegate system call

Perfo
rm

system

 call Return

w
ait

w
ait

w
ait Notify exit

CPU core X CPU core Y

tim
e

restart

ROSS'14, Munich

Advantage

13

 Completely eliminates paging cost

 Page walk (address translation) cost

 Overhead to TLB shootdown

 TLB power consumption…

 OS kernel can still use paging features

 Implementation is not so difficult

 We can use system call handlers in paging kernel’s code

ROSS'14, Munich

Limitation

14

 ≒ Limitation of segmentation (for applications)

 We can’t change the size of (data) segment

 Internal memory fragmentation

 No access control (only read/write for data segment)

 Characteristics of applications are important

 No too complicated memory (de)allocation patterns

 No need of access control

ROSS'14, Munich

Restrictions of Implementation

15

 We had to use 32 bit mode!

 Segmentation is not fully supported in x86’s 64 bit mode

 ⇒ 32-bit segmentation kernel & 64-bit paging kernel

 Memory usage ≦ 4GB

 Currently few system calls are supported

 e.g. neither fork() nor clone() are supported

ROSS'14, Munich

McKernel

16

 Used as the paging kernel (running on one core)

 A light-weight kernel for manycore architecture

 Developed by U-Tokyo, RIKEN AICS, Hitachi, NEC, and Fujitsu

 Running with the help of host Linux

 Program execution on McKernel through host Linux

 System call delegation to host Linux

Xeon Phi

McKernel

 IHK

Host CPU

Linux

 IHK

IKC

ROSS'14, Munich

IKC: Inter Kernel Communication

IHK: Interface for Heterogeneous Kernels

Two system calls added to McKernel

17

 These are called by the delegation process

 init_core()

1. Boot segmentation cores

2. Reserve & mmap() contiguous address space

 load_core() (the main part of delegation process)

1. Load the binary of the application into the reserved area

2. Start the application and wait

3. Perform delegated system calls

4. Exit when the application exits

ROSS'14, Munich

Agenda

18

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Evaluation

19

 RandomAccess in the HPC Challenge benchmark

 Our Approach vs. McKernel with 4K/2MB pages

 Codes are almost equivalent at binary level

 Graph500

 Our Approach vs. MPSS Linux with 4K/2MB pages

 Codes are very different at binary level

 Of course the same source code

 i.e. maximum load/store size, special instructions

 Both of them are executed on single thread

ROSS'14, Munich

RandomAccess

20

90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

200%

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

1
2

8
M

2
5

6
M

5
1

2
M 1
G

2
G

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

o

f
se

gm
e

n
ta

ti
o

n

Memory size

to 2MB to 4kB

b
e
tt

e
r

ROSS'14, Munich

Graph500

21

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

21 22 23 24 25

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

o

f
se

gm
e

n
ta

ti
o

n
 (

B
FS

 s
e

ar
ch

)

Graph SCALE (size = 2^SCALE)

to 2MB (MPSS Linux)

to 4kB (MPSS Linux)b
e
tt

e
r

ROSS'14, Munich

Agenda

22

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Related Work

23

 Direct segment [Basu et al, 13]

 New hardware to combine paging and segmentation

 They only give performance estimation

 FusedOS [Park et al, 12]

 Applications run on a light-weight kernel

 with system call offloading to Linux

 Not address the TLB issues

 Other research on paging

 Not eliminate paging cost completely

ROSS'14, Munich

Agenda

24

 Background on virtual memory

 Design & Implementation of the hybrid

segmentation kernel approach

 Evaluation

 Related Work

 Conclusion & Future Work

ROSS'14, Munich

Conclusion

25

 Hybrid kernel approach on manycore architecture

 Most cores are in segmentation, some cores are in paging

 Applications runs over segmentation

 System call offloading to paging kernel

 It gets 81% (4KB page) and 9% (2MB page)

improvement compared to a OS based on paging

 Graph500

 We encourage hardware designers to consider full

support of segmentation in x86 64-bit mode!

ROSS'14, Munich

Future Work

26

 Support for multi-threading

 Evaluation in terms of OS noise

 Reduction of OS noise -> performance predictability?

ROSS'14, Munich

