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OVERVIEW

• Introduction
– Intel Xeon Phi architecture

• Motivation
– Effects of per-core thread count on performance

• Dynamic threading
– Algorithm and implementation 

of automatic thread count adaptation

• Results & conclusion
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XEON PHI ARCHITECTURE

• Up to 4 SMT threads per core

• ~60 cores

• Per-core private L1+L2 caches, coherent

• Ring-based interconnect
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HOW MANY SMT THREADS? VARIES!

• Core:

– at least two to keep pipeline fully occupied

– more threads can overlap more latency

• Cache:

– shared L1-I/D and L2, TLBs

– threads can evict each other’s data

• Memory:

– more threads keeps more requests outstanding

– no more gains once bandwidth is saturated

6



THREAD COUNT ACROSS APPLICATIONS
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More threads is better!

More threads is worse!?



THREAD COUNT ACROSS INPUT SETS (BT)
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Small input set: 
cache-fitting at low thread counts,
cache-thrashing at high thread counts

Large input set: many threads
to overlap memory latency



THREAD COUNT ACROSS INPUT SETS

• Best vs. per-application setting based on B
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CLUSTER-AWARE UNDERSUBSCRIBED

SCHEDULING OF THREADS (CRUST)

• Move decision from programmer to runtime

– Integrated into the OpenMP runtime library

– No application changes

• Dynamic undersubscription

– Automatically find best setting per workload, input set, 

during the application

– Exploit iterations / time steps in the workloads

• Adapt to each #pragma omp parallel individually

– Recognizes workload phase behavior



PER-SECTION TUNING

• Calibration phase: for each section occurrence,

– Measure hardware performance counters

• Clock cycles, instruction count, L2 misses

• More would have been nice but not supported by KNC

• Use user-mode rdpmc for low overhead

– Try all 4 thread counts in subsequent occurrences

• Pick best cycle count

• Instruction count not stable: spin loops

• Stable phase:

– Keep watching L2 miss rate, recalibrate on change

– Signifies data-dependent behavior
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DYNAMIC AGGREGATION

• Large sections: data reuse inside phase

• Small sections: data reuse across phases

– No good to keep changing thread count / data 
partitioning

• Dynamically aggregate sections

– Up to 50 million clock cycles (~50 ms)

– “Aggregate” forms one new section id

– Using IPC rather than runtime
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EFFICIENT PMU COLLECTION

• Use Linux perf interface for counter setup

• Reading counters:

– read system call

– lots of inter-processor interrupts

– many million clock cycles overhead

• Alternative:

– user-mode rdpmc instruction, reads local counter

– have each OpenMP worker thread read its own counters, 
communicate results through shared memory
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```

main thread worker threads

(serial code)
#pragma omp parallel
__kmpc_fork_call

o

o

(serial code)

CRUST-section-begin
omp_set_num_threads

CRUST-section-begin-thread
rdpmc

CRUST-section-end-thread
rdpmc

CRUST-section-end
(collect statistics)

__kmp_run_before_invoked_task
o

(parallel code)

__kmp_run_after_invoked_task
o

CRUST hooks

IMPLEMENTATION
• Open-source Intel OpenMP library at http://www.openmprtl.org

• Added 4 hooks, recompiled into new libiomp5.so (no application changes)

• Dynamic threading functionality in separate libcrust.so

• Easily portable to other parallel runtimes (TBB, Cilk, …)

http://www.openmprtl.org/


RESULTS

• Able to find best thread count for all applications

• Benchmarks too simple to benefit from per-region tuning

15



• Threads per core (top) and performance 
(cycles/section, bottom) through time

• Calibration phase (1st half), stable phase (2nd half)

THROUGH-TIME BEHAVIOR
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COMPLEX APPLICATIONS
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CoMD

• Multiple distinct phases:
– Light: compute bound, high thread count

– Dark: memory bound, low thread count

• 2% speedup over best-static



CONCLUSIONS

• Per-core thread count on Xeon Phi affects 
performance in multiple ways

– Core, cache, main memory effects

• Best thread count varies

– Across applications, input sets, workload phases

• Dynamically determining best thread count

– Per application phase (#pragma omp parallel)

– Aggregate small phases

– Use performance counters for more insight

• Prototyped in Intel OpenMP runtime library
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