
AUTOMATIC SMT THREADING

FOR OPENMP APPLICATIONS

ON THE INTEL XEON PHI CO-PROCESSOR

WIM HEIRMAN1,2 TREVOR E. CARLSON1 KENZO VAN CRAEYNEST1

IBRAHIM HUR2 AAMER JALEEL2 LIEVEN EECKHOUT1

1 GHENT UNIVERSITY

2 INTEL CORPORATION

ROSS 2014, MUNICH



Intel Exascale Labs — Europe

Strong Commitment To Advance Computing Leading Edge:
Intel collaborating with HPC community & European researchers 

4 labs in Europe - Exascale computing is the central topic

ExaScale Computing 

Research Lab, Paris

Performance and scalability of 
Exascale applications

Tools for performance 
characterization

ExaCluster Lab, 

Jülich

Exascale cluster scalability
and reliability

Life Science applications

Architectural simulation

Scalable kernels and RT

ExaScience Lab, 

Leuven

Scalable RTS and tools

New algorithms

Intel and BSC Exascale

Lab, Barcelona 

http://www.google.fr/imgres?imgurl=http://www2.iap.fr/users/riazuelo/img/logoCEA.JPG&imgrefurl=http://www2.iap.fr/users/riazuelo/index.html&h=213&w=217&sz=7&tbnid=e0g5b27UZQ9I_M::&tbnh=105&tbnw=107&prev=/images?q=logo+CEA&hl=fr&usg=__ZEHCoO_aADKuKHtZjYRNDlTUGE8=&ei=zuUDSvSlMuONjAfQi43ZBA&sa=X&oi=image_result&resnum=3&ct=image
http://www.google.fr/imgres?imgurl=http://www2.iap.fr/users/riazuelo/img/logoCEA.JPG&imgrefurl=http://www2.iap.fr/users/riazuelo/index.html&h=213&w=217&sz=7&tbnid=e0g5b27UZQ9I_M::&tbnh=105&tbnw=107&prev=/images?q=logo+CEA&hl=fr&usg=__ZEHCoO_aADKuKHtZjYRNDlTUGE8=&ei=zuUDSvSlMuONjAfQi43ZBA&sa=X&oi=image_result&resnum=3&ct=image


3

© IMEC 2013 

EXASCIENCE LIFE LAB
H I G H P E R F O R M A N C E C O M P U T I N G I N L I F E

S C I E N C E S

WU4 

ARCHITECTURAL SIMULATION

WU1

HIGH PERFORMANCE BIOSTATISTICS

APPLICATIONS

WU2

PLATFORMS AND FLEXIBLE PERFORMANCE

FOR DNA/RNA SEQUENCING, VISUALIZATION

AND ANALYSIS

WU3

DATA INTENSIVE PARALLEL PROGRAMMING MODELS

W
U

0

M
A

N
A

G
E

M
E

N
T

, 
B

U
S

IN
E

S
S

M
O

D
E

L
S

&
 I

N
F

R
A

S
T

R
U

C
T

U
R

E



OVERVIEW

• Introduction
– Intel Xeon Phi architecture

• Motivation
– Effects of per-core thread count on performance

• Dynamic threading
– Algorithm and implementation 

of automatic thread count adaptation

• Results & conclusion
4



XEON PHI ARCHITECTURE

• Up to 4 SMT threads per core

• ~60 cores

• Per-core private L1+L2 caches, coherent

• Ring-based interconnect

5

… (60)

Core

Cache

Core

Cache

Core

Cache

Core

Cache

Main memory



HOW MANY SMT THREADS? VARIES!

• Core:

– at least two to keep pipeline fully occupied

– more threads can overlap more latency

• Cache:

– shared L1-I/D and L2, TLBs

– threads can evict each other’s data

• Memory:

– more threads keeps more requests outstanding

– no more gains once bandwidth is saturated

6



THREAD COUNT ACROSS APPLICATIONS

7

More threads is better!

More threads is worse!?



THREAD COUNT ACROSS INPUT SETS (BT)

8

Small input set: 
cache-fitting at low thread counts,
cache-thrashing at high thread counts

Large input set: many threads
to overlap memory latency



THREAD COUNT ACROSS INPUT SETS

• Best vs. per-application setting based on B

9



10

CLUSTER-AWARE UNDERSUBSCRIBED

SCHEDULING OF THREADS (CRUST)

• Move decision from programmer to runtime

– Integrated into the OpenMP runtime library

– No application changes

• Dynamic undersubscription

– Automatically find best setting per workload, input set, 

during the application

– Exploit iterations / time steps in the workloads

• Adapt to each #pragma omp parallel individually

– Recognizes workload phase behavior



PER-SECTION TUNING

• Calibration phase: for each section occurrence,

– Measure hardware performance counters

• Clock cycles, instruction count, L2 misses

• More would have been nice but not supported by KNC

• Use user-mode rdpmc for low overhead

– Try all 4 thread counts in subsequent occurrences

• Pick best cycle count

• Instruction count not stable: spin loops

• Stable phase:

– Keep watching L2 miss rate, recalibrate on change

– Signifies data-dependent behavior

11



DYNAMIC AGGREGATION

• Large sections: data reuse inside phase

• Small sections: data reuse across phases

– No good to keep changing thread count / data 
partitioning

• Dynamically aggregate sections

– Up to 50 million clock cycles (~50 ms)

– “Aggregate” forms one new section id

– Using IPC rather than runtime

12



EFFICIENT PMU COLLECTION

• Use Linux perf interface for counter setup

• Reading counters:

– read system call

– lots of inter-processor interrupts

– many million clock cycles overhead

• Alternative:

– user-mode rdpmc instruction, reads local counter

– have each OpenMP worker thread read its own counters, 
communicate results through shared memory

13



```

main thread worker threads

(serial code)
#pragma omp parallel
__kmpc_fork_call

o

o

(serial code)

CRUST-section-begin
omp_set_num_threads

CRUST-section-begin-thread
rdpmc

CRUST-section-end-thread
rdpmc

CRUST-section-end
(collect statistics)

__kmp_run_before_invoked_task
o

(parallel code)

__kmp_run_after_invoked_task
o

CRUST hooks

IMPLEMENTATION
• Open-source Intel OpenMP library at http://www.openmprtl.org

• Added 4 hooks, recompiled into new libiomp5.so (no application changes)

• Dynamic threading functionality in separate libcrust.so

• Easily portable to other parallel runtimes (TBB, Cilk, …)

http://www.openmprtl.org/


RESULTS

• Able to find best thread count for all applications

• Benchmarks too simple to benefit from per-region tuning

15



• Threads per core (top) and performance 
(cycles/section, bottom) through time

• Calibration phase (1st half), stable phase (2nd half)

THROUGH-TIME BEHAVIOR

16



COMPLEX APPLICATIONS

17

CoMD

• Multiple distinct phases:
– Light: compute bound, high thread count

– Dark: memory bound, low thread count

• 2% speedup over best-static



CONCLUSIONS

• Per-core thread count on Xeon Phi affects 
performance in multiple ways

– Core, cache, main memory effects

• Best thread count varies

– Across applications, input sets, workload phases

• Dynamically determining best thread count

– Per application phase (#pragma omp parallel)

– Aggregate small phases

– Use performance counters for more insight

• Prototyped in Intel OpenMP runtime library

18


