AUTOMATIC SMT THREADING
FOR OPENMP APPLICATIONS
ON THE INTEL XEON PHI CO-PROCESSOR
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OVERVIEW

* |Introduction
— Intel Xeon Phi architecture

* Motivation
— Effects of per-core thread count on performance

* Dynamic threading

— Algorithm and implementation
of automatic thread count adaptation

e Results & conclusion



XEON PHI ARCHITECTURE

 Up to 4 SMT threads per core

* ~60 cores

* Per-core private L1+L2 caches, coherent
* Ring-based interconnect

Main memory




How MANY SMT THREADS? VARIES!

* Core:
— at least two to keep pipeline fully occupied
— more threads can overlap more latency

* Cache:
— shared L1-1/D and L2, TLBs
— threads can evict each other’s data
* Memory:
— more threads keeps more requests outstanding
— no more gains once bandwidth is saturated



THREAD COUNT ACROSS APPLICATIONS

All benchmarks - B input set
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THREAD COUNT ACROSS INPUT SETS (BT)

Small input set:
cache-fitting at low thread counts,
cache-thrashing at high thread counts

Large input set: many threads
to overlap memory latency

BT benchmark - all inputs
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THREAD COUNT ACROSS INPUT SETS

* Best vs. per-application setting based on B
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CLUSTER-AWARE UNDERSUBSCRIBED
SCHEDULING OF THREADS (CRUST)

 Move decision from programmer to runtime
— Integrated into the OpenMP runtime library
— No application changes

* Dynamic undersubscription

— Automatically find best setting per workload, input set,
during the application

— Exploit iterations / time steps in the workloads

* Adapt to each #pragma omp parallel individually

— Recognizes workload phase behavior
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PER-SECTION TUNING

* Calibration phase: for each section occurrence,

— Measure hardware performance counters
e Clock cycles, instruction count, L2 misses
* More would have been nice but not supported by KNC
e Use user-mode rdpmc for low overhead

— Try all 4 thread counts in subsequent occurrences
* Pick best cycle count
* Instruction count not stable: spin loops

e Stable phase:
— Keep watching L2 miss rate, recalibrate on change
— Signifies data-dependent behavior
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DYNAMIC AGGREGATION

* Large sections: data reuse inside phase

 Small sections: data reuse across phases
— No good to keep changing thread count / data
partitioning
* Dynamically aggregate sections
— Up to 50 million clock cycles (~50 ms)
— “Aggregate” forms one new section id
— Using IPC rather than runtime
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EFFICIENT PMU COLLECTION

e Use Linux perf interface for counter setup
* Reading counters:

— read system call
— lots of inter-processor interrupts
— many million clock cycles overhead

e Alternative:

— user-mode rdpmc instruction, reads local counter

— have each OpenMP worker thread read its own counters,
communicate results through shared memory
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IMPLEMENTATION

* Open-source Intel OpenMP library at http://www.openmprtl.org

 Added 4 hooks, recompiled into new libiomp5.so (no application changes)
* Dynamic threading functionality in separate libcrust.so
* Easily portable to other parallel runtimes (TBB, Cilk, ...)

main thread worker threads CRUST hooks
(serial code) I
H#pragma omp parallel
__kmpc_fork_call
o » CRUST-section-begin
omp_set_num_threads
__kmp_run_before_invoked task
(¢ » CRUST-section-begin-thread
rdpmc
(parallel code)
__kmp_run_after_invoked task
o » CRUST-section-end-thread
rdpmc
o) » CRUST-section-end
(collect statistics)
(serial code)
|
|
P —————————————



http://www.openmprtl.org/

Runtime (relative to best static)

RESULTS

* Able to find best thread count for all applications
* Benchmarks too simple to benefit from per-region tuning
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THROUGH-TIME BEHAVIOR

 Threads per core (top) and performance
(cycles/section, bottom) through time

 Calibration phase (1t half), stable phase (2" half)
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COMPLEX APPLICATIONS

* Multiple distinct phases:
— Light: compute bound, high thread count
— Dark: memory bound, low thread count

* 2% speedup over best-static
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CONCLUSIONS

e Per-core thread count on Xeon Phi affects
performance in multiple ways

— Core, cache, main memory effects

e Best thread count varies

— Across applications, input sets, workload phases

* Dynamically determining best thread count
— Per application phase (#pragma omp parallel)
— Aggregate small phases
— Use performance counters for more insight

* Prototyped in Intel OpenMP runtime library
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