AUTOMATIC SMT THREADING
FOR OPENMP APPLICATIONS
ON THE INTEL XEON PHI CO-PROCESSOR

WiM HEIRMANL2 TREVOR E. CARLSON! KENzO VAN CRAEYNEST!
IBRAHIM HURZ AAMER JALEEL? LIEVEN EECKHOUTY

L GHENT UNIVERSITY
2 INTEL CORPORATION

|ExaScience Lab
Intel Labs Evrope

UN%TEW @

ROSS 2014, MuUNICH

Intel Exascale Labs — Europe

Strong Commitment To Advance Computing Leading Edge:
Intel collaborating with HPC community & European researchers
4 labs in Europe - Exascale computing is the central topic

ExaScale Computing
Research Lab, Paris

ExaCluster Lab,
Julich

) 0LICH

ExaScience Lab,

Leuven

Intel and BSC Exascale
Lab, Barcelona

Baroclona
Supcrocomputing
Center

— = oD k! /D 2 imec e
ot e o oa vt v inte PasTec | wlbiie i R -
(@D [~ = S (inte!
Perf%rxrgag|(':16(]:|(?e %rg)clljl?gaa{ielgrl]gty of Exascale cluster scalability Life SlC|ence appllcatlc.)ns Scalable RTS elmd tools
and reliability Architectural simulation New algorithms
Tools for performance
characterization Scalable kernels and RT

intel)

http://www.google.fr/imgres?imgurl=http://www2.iap.fr/users/riazuelo/img/logoCEA.JPG&imgrefurl=http://www2.iap.fr/users/riazuelo/index.html&h=213&w=217&sz=7&tbnid=e0g5b27UZQ9I_M::&tbnh=105&tbnw=107&prev=/images?q=logo+CEA&hl=fr&usg=__ZEHCoO_aADKuKHtZjYRNDlTUGE8=&ei=zuUDSvSlMuONjAfQi43ZBA&sa=X&oi=image_result&resnum=3&ct=image
http://www.google.fr/imgres?imgurl=http://www2.iap.fr/users/riazuelo/img/logoCEA.JPG&imgrefurl=http://www2.iap.fr/users/riazuelo/index.html&h=213&w=217&sz=7&tbnid=e0g5b27UZQ9I_M::&tbnh=105&tbnw=107&prev=/images?q=logo+CEA&hl=fr&usg=__ZEHCoO_aADKuKHtZjYRNDlTUGE8=&ei=zuUDSvSlMuONjAfQi43ZBA&sa=X&oi=image_result&resnum=3&ct=image

MANAGEMENT , BUSINESS MODELS & INFRASTRUCTURE

WuO0

EXASCIENCE LIFE LAB

HIGH PERFORMANGE&W COMPUTING IN LIFE
S C"IFE NTC EssS

Wu1l Wu2
HIGH PERFORMANCE BIOSTATISTICS PLATFORMS AND FLEXIBLE PERFORMANCE
APPLICATIONS FOR DNA/RNA SEQUENCING, VISUALIZATION

AND ANALYSIS

& e

WU3

imec o o sl 2 universiteit
K'-;'_',: Br.asel »»NASSEN

Wu4

OVERVIEW

* |Introduction
— Intel Xeon Phi architecture

* Motivation
— Effects of per-core thread count on performance

* Dynamic threading

— Algorithm and implementation
of automatic thread count adaptation

e Results & conclusion

XEON PHI ARCHITECTURE

 Up to 4 SMT threads per core

* ~60 cores

* Per-core private L1+L2 caches, coherent
* Ring-based interconnect

Main memory

How MANY SMT THREADS? VARIES!

* Core:
— at least two to keep pipeline fully occupied
— more threads can overlap more latency

* Cache:
— shared L1-1/D and L2, TLBs
— threads can evict each other’s data
* Memory:
— more threads keeps more requests outstanding
— no more gains once bandwidth is saturated

THREAD COUNT ACROSS APPLICATIONS

All benchmarks - B input set

3.0
More threads is better!

2.5
@
£
= 20
2 More threads is worse!?
=
§, 15
1))
@
=
= 1.0
Ko
o

0.5 | i

0.0

bt ft Is lu sp ua

Threads per core
1 CJ2 Nl 3 C3J4 B8

THREAD COUNT ACROSS INPUT SETS (BT)

Small input set:
cache-fitting at low thread counts,
cache-thrashing at high thread counts

Large input set: many threads
to overlap memory latency

BT benchmark - all inputs

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Relative execution time

A B C

Threads per core
1C2 W 3 14 .

THREAD COUNT ACROSS INPUT SETS

* Best vs. per-application setting based on B

2
.’(_3 2-5 ——————— pan @ aES $2aE $2eaap $2@EG 42e@aoG» 2 2e@EG» e e e 42
e
©
pd
o
@ 2.0 .
Q N
2 45 :
q) . -4 -— -— . -— -— - 44y | - = = - - - o= = 28l 4 4=
= — 2 4 112
© 4444 444 3333 23 f4444 j44 1117 223_
© 1.0+ 1 - i
‘q')’ 114|444 [1]1|4|4|4| |2/3/3|3[3] [1|1|2|3| |1]|2|4]3[4| [1|2|4|4] |1]1]1]2(3] |1|2|2|3|3
£
= 05 H - - y =
o
o
0.0

WABCD WABCD WABCD WABC WABCD WABC WABCD WABCD
bt cg ft IS lu sp mg ua

CLUSTER-AWARE UNDERSUBSCRIBED
SCHEDULING OF THREADS (CRUST)

 Move decision from programmer to runtime
— Integrated into the OpenMP runtime library
— No application changes

* Dynamic undersubscription

— Automatically find best setting per workload, input set,
during the application

— Exploit iterations / time steps in the workloads

* Adapt to each #pragma omp parallel individually

— Recognizes workload phase behavior

10

PER-SECTION TUNING

* Calibration phase: for each section occurrence,

— Measure hardware performance counters
e Clock cycles, instruction count, L2 misses
* More would have been nice but not supported by KNC
e Use user-mode rdpmc for low overhead

— Try all 4 thread counts in subsequent occurrences
* Pick best cycle count
* Instruction count not stable: spin loops

e Stable phase:
— Keep watching L2 miss rate, recalibrate on change
— Signifies data-dependent behavior

11

DYNAMIC AGGREGATION

* Large sections: data reuse inside phase

 Small sections: data reuse across phases
— No good to keep changing thread count / data
partitioning
* Dynamically aggregate sections
— Up to 50 million clock cycles (~50 ms)
— “Aggregate” forms one new section id
— Using IPC rather than runtime

12

EFFICIENT PMU COLLECTION

e Use Linux perf interface for counter setup
* Reading counters:

— read system call
— lots of inter-processor interrupts
— many million clock cycles overhead

e Alternative:

— user-mode rdpmc instruction, reads local counter

— have each OpenMP worker thread read its own counters,
communicate results through shared memory

13

IMPLEMENTATION

* Open-source Intel OpenMP library at http://www.openmprtl.org

 Added 4 hooks, recompiled into new libiomp5.so (no application changes)
* Dynamic threading functionality in separate libcrust.so
* Easily portable to other parallel runtimes (TBB, Cilk, ...)

main thread worker threads CRUST hooks
(serial code) I
H#pragma omp parallel
__kmpc_fork_call
o » CRUST-section-begin
omp_set_num_threads
__kmp_run_before_invoked task
(¢ » CRUST-section-begin-thread
rdpmc
(parallel code)
__kmp_run_after_invoked task
o » CRUST-section-end-thread
rdpmc
o) » CRUST-section-end
(collect statistics)
(serial code)
|
|
P —————————————

http://www.openmprtl.org/

Runtime (relative to best static)

RESULTS

* Able to find best thread count for all applications
* Benchmarks too simple to benefit from per-region tuning

35y R
.0 [
2.5 [
2.0
1.5 |

1.0

0.5 |

0.0

ABCD ABCD ABCD ABC ABCD ABCD ABCD ABCD
bt cg ft IS lu mg sp ua

Dynamic s Worst-case static ————1 15

THROUGH-TIME BEHAVIOR

 Threads per core (top) and performance
(cycles/section, bottom) through time

 Calibration phase (1t half), stable phase (2" half)

cg/W cg/C

i 1 13 o - 43 o
D L @ 0 B 3
o) —_——_—-— 1 T o 3 41 5
e 0.1 F © o ©
> o > (O
O E O 2r E

0.05 4'_1_
1 -
O | | | | | | O | | | | |
0051152253835 0O 5 10 15 20 25 30
Instructions (B) Instructions (B)

Section duration Thread count == ==

16

COMPLEX APPLICATIONS

* Multiple distinct phases:
— Light: compute bound, high thread count
— Dark: memory bound, low thread count

* 2% speedup over best-static

CoMD
B HEHHHE T
H e by
© | 5 —_ _
©
g 60 |
>
2 40 -
20 |
0_
| | | |
0 1 2 3 4 5

Time (seconds)

IPC —— Thread count = =

- N W s

Threads/core

17

CONCLUSIONS

e Per-core thread count on Xeon Phi affects
performance in multiple ways

— Core, cache, main memory effects

e Best thread count varies

— Across applications, input sets, workload phases

* Dynamically determining best thread count
— Per application phase (#pragma omp parallel)
— Aggregate small phases
— Use performance counters for more insight

* Prototyped in Intel OpenMP runtime library

18

