Design and Implementation of
Parallel File Aggregation Mechanism

Jun Kato* and Yutaka Ishikawa
The University of Tokyo
* Currently affiliated with Fujitsu Laboratories Limited

Agenda

» File organization trend of HPC applications
use of millions of small files

» Problem of single shared file approach for reducing the
number of files

exhibiting low I/O performance through a benchmark program

» PFA (Parallel File Aggregation) Mechanism
providing single shared file APIs for high I/O performance

» Evaluation result on a real HPC application

3.8 times faster than the original with reducing the number of
files by about 100,000 files

» Conclusion
» Q& A

International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31

2

Agenda

» File organization trend of HPC applications
» use of millions of small files

» Problem of single shared file approach for reducing the
number of files

» exhibiting low I/0 performance through a benchmark program

» PFA (Parallel File Aggregation) Mechanism
» providing single shared file APIs for high I/0 performance

» Evaluation result on a real HPC application

» 3.8 times faster than the original with reducing the number of
files by about 100,000 files

» Conclusion
» Q& A

} International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31

3

File Organization Trend of HPC Applications

» Use of millions of several-MB-—sized files

Examples of real HPC applications
Integrated Microbial Genomes System [Rockville 2009]
1 69 million files
1 Average file size : < 1KB
Nearby Supernova Factory [Cecilia 2009]
1 over 100 million files
1 Max file size : SMB

Statistics on HPC file systems [shobhit 2008]
60% of files : < 1MB
80% of files : < 8MB
99% of files : < 64MB

International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 4

Design of Current HPC Applications

» N—N pattern

N processes utilize N independent files

Application are T
PP Millions of process utilize

Process millions of files

on millions of CPU cores
Process
A
oS

Each process accesses
its own independent file

File B

Process

C v Hard file management

v Heavy metadata workload

International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 5

Goal of This Research

» N—1 pattern

» Nprocesses utilize 7 shared file

/ Application \ / Application \

Change of
application pattern

210
Process g R
Ly . Process Process
ne o D

N—-N pattern N-1 pattern
Why do current HPC applications not employ the N—1 pattern ?

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 6

Problem of the N-1 pattern (1/2)

» Low I/O Performance Legend
» Benchmark Program : MPI-IO Test —#— N-N pattern J

» File System : Lustre Parallel File System —&— N-1 pattern

[Read] [Write]
3 8000 5 600
(b}
3 7900 < 500
o 6000)
= = 400
Z 5000 — =
£ 4000 £ 300
S 3000 / 2 200
£ 2000 - 5 00
@ 1000 —W @ .‘_._.,._.----—I-I-TF':'
0 T T T T T T) 0 [[[[[[[[[[[[[[[|
16 24 32 40 48 56 64 8 24 40 56 72 88 104120
of processes # of processes
over 3 times lower over D times lower

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 7

Problem of the N-1 pattern (2/2)

» File lock contention [Rrichard 2005]

» Each process must acquire file lock every stripe block before
data access for consistency

Node
// ™~ Node
(/ (Wait

.
Application Wait
Process Process Process
A B D
]
¢ Blocked! .~ /

’

K4
, .
s’
[}
T
N Jid

Shared
File ©®©® |Ocke<'1| by A\\ [Iocke(_i by D] (Y X
\ y } Process B and C must wait until the lock is released
Stripe Block m) Performance degradation

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 8

Agenda

» File organization trend of HPC applications
» use of millions of small files

» Problem of single shared file approach for reducing the
number of files

» exhibiting low I/0O performance through a benchmark program

» PFA (Parallel File Aggregation) Mechanism
» providing single shared file APIs for high I/0 performance

» Evaluation result on a real HPC application

» 3.8 times faster than the original with reducing the number of
files by about 100,000 files

» Conclusion
» Q& A

} International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31

9

Proposed Mechanism

» PFA (Parallel File Aggregation) Mechanism

» provides N—1 pattern APIs based on memory—map
» reduces [/0O contention by aggregating I/0Os
4

does not need file lock

v

reduces amount of data by incremental logging feature

v improves the write bandwidth of the N—1 pattern
v'reduces the # of files with the use of the N—-1 pattern

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 10

APIs of the PFA Mechanism

» Data are read and written sequentially through the APlIs

based on memory—map

v Write data

const size_t buf size = 272,383;

/* allocate a memory region for write */
char* buf

= pfa_mmap(“foo.txt”, buf size, rank, -+);

while (condition) {
buf[---] =---; /* edit data */

pfa_append(buf, **-); /* append data */
}
/* free the memory region */

pfa_munmap(buf);

v Read data

const size_t buf size = 272,383;

/* allocate a memory region for read */
char* buf

= pfa_ mmap(“foo.txt”, buf size, rank, *--

while (condition && ! pfa eof(buf)) {
o+ = puf[-+]; /* read data */

pfa_seek(buf, ---); /* read data */
}

/* free the memory region */

pfa_munmap(buf);

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31

11

Overview of the PFA mechanism

» The PFA mechanism works on file system client

» It does not need to modify file system server

Node
/ Application \

Process Process
A B

&

ser Address Space

v" APls based on memory—ma
Kernel Address Space i ry—map

v' 1/0 aggregation on chunk

File System Client
.
L Chunk Chunk J/ v Incremental Logging Feature

NS

File System Server I v Direct1/0

. un unk [o
Shared File 0 oo - v/ Stripe aware data layout

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 12

Memory-map

» APIs based on memory—map transfer data from the user
address space directly

fwrite/MPI_File write

ST (MPI-IO [Rajeev 1999]) pfa_append
7~ Application ~
Data Data
- _/

User Address Space

Kernel Address Space

File System Client

 copy 0 copy
l @

To File System Server

International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31

[/O Aggregation

» Data are aggregated into chunk on file system client

Without Aggregation With Aggregation
/ Application ™

Process Process

[Data I Data J{ Data] [Data I Data I Data]

User Address Space

Kernel Address Space LChunk]
File System Client v v v N
[Data I Data }[Data J
I — /
H; | 3o (| 110
v requests v request

To File System Server

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31

14

Incremental Logging Feature - Overview

» Unmodified data from the previous store are not stored again

Without Incremental With Incremental
Logging Feature Logging Feature
/Application £ang ERINg ™
Process Process

[Data I Data I Data] [Data I Data][Data]

User Address Space

Kernel Address Space LChunk] LChunk
File System Client v v v \Z
{ Data I Data} Data] Data }[Data
/ { Metadata
v 2" data == 1st data | 4

2"d stored data is same De—duplicate data

as 1st stored data
» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 15

To File System Server

Incremental Logging Feature
- Detection of Modified Data

» Page protection fault is used to detect modified data
Page @ Writable Page

Sample Code On Memory Page | Write Protected Page
char buff Page 0 Page 1 Page 2 v" Allocating pages for buff
= pfa_mmap(-); T_
. buff
v' Storing data
pfa_append(buff, ==+); Page 0 | Page 1 | Page 2 v Turning off the write bit of
. the all pages
. wl(_ write v" Handling page protection
buff(0] = ---; Page 0 Page 1 Page 2 fault on Page 0
. v" Turning on the write bit of
the Page O
- —
pfa_append(buff, ---); <Page O> Page 1 Page 2 v’ Storing data onl(y on)
modified pages (= Page 0
Modified Data”

International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 16

Direct I/O

» Direct I/0 avoids cache duplication between file system
cache and chunk of the PFA mechanism

File System Client
Without direct I/0

4Data | Data][Data JD

With direct 1/0 Chunk\

Data I Data }[Data]

(

[File System Cache }

/

the file system cache To File System Server

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 17

Data Layout on Shared File

» Each chunk is aligned on stripe block

/ Node Node \
Application \ /
Process Process Process Process
:
l,/’
__/ %
Shared oo Chunk Chunk C Chunk
File A 1st B 1st C 1st D 1st A 2nd B 2n
\ J
|
Stripe Block

Each process does not need to acquire file lock

» International Workshop on Runtime and Operating Systems for Supercomputers 2011

5/31

18

Agenda

» File organization trend of HPC applications
» use of millions of small files

» Problem of single shared file approach for reducing the
number of files

» exhibiting low I/0O performance through a benchmark program

» PFA (Parallel File Aggregation) Mechanism
» providing single shared file APIs for high I/0 performance

» Evaluation result on a real HPC application

» 3.8 times faster than the original with reducing the number of
files by about 100,000 files

» Conclusion
» Q& A

} International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31

19

Evaluation Environment

» Evaluated on Lustre Parallel File System
» Lustre Client
128 cores (= 4 cores * 2 sockets * 16 nodes)

» Lustre Server
1 MDS (Meta Data Server) on VMWare vSphere 4
4 OSS (Object Storage Server) + 6 OST (Object Storage Target)

I S S S

Intel Xeon X5550 Intel Xeon L5640 Intel Xeon L5640
2.67GHz, 8cores 2.26GHz, 4 cores in 12 cores 2.26GHz, 12 cores
Memory DDR3 24GB DDR3 16008MB in 48GB DDR3 48GB
Disk 160GB SATA 6Gbps 7,200 rom SAS 6Gbps 7,200 rom SAS
500GB x 4 500GB x 2
Interconnect Infiniband 4x QDR Infiniband 4x QDR Infiniband 4x QDR
oS RHEL5(2.6.18-194) RHEL5(2.6.18-164) RHEL5(2.6.18-164)
Lustre 1.8.4 1.8.3 1.8.3

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 20

Bandwidth [MB/sec]

MPI-1O Test Benchmark

» Test Configuration

1. Write 272,383 bytes for a minute

2. Read written data
» Result

» N-N > N-1 with the PFA > N-1
» N-N pattern generates 128 files at most -~ too low

8000
7000
6000

[Read]
5000
4000

3000
2000 -
1000 - 7.M

0

16 24 32 40 48 56 64
of processes

Over
2 times

Bandwidth [MB/sec]

e Legend ~N
—#— N-N pattern
—#— N-1 pattern
—#— N-1 pattern
_ with the PFA \
[Write]
600
400 -
300 Over
200 5 times
100 .‘_._._._.-----I-I—-I-I*'
0 [[[[[[[[[[[[[[[|
O O © N T O
Al < IO~ 0 O N

of processes

» International Workshop on Runtime and Operating Systems for Supercomputers 2011

5/31 21

Athena Application [stone 2008

Original » Simulating Rayleigh—Taylor
&99584 files l instability with 128 processes

with incremental logging
1 Saving 30.8% data

» 49792 checkpoint data files
Average file size : 272383 byte

without incremental logging

200
120

450 -
/ g ..
_ 400 -—'\-l.—.—.—-f. » Total 99584 files in original
(&)
g 390 With the PF]7 » 49792 simulation data files
£ 300 - 2 files Average file size : 737534 byte
= 250 -~
Z
o
%
)
Ll

100 -
Without 1/0

50]—
0 Limit Value

Good TNYeedI
00 — Speeding up 3.8 times faster than
Stripe Size [MB]

the original in I/0 part

» International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 22

Related Work & Comparison

4 MPI_IO [Rajeev 1999]
provides N—1 pattern APIs based on file

requires copy between the user and the kernel address spaces

4 SIOth [Frings 2009]
converts the N—N pattern into N—1 pattern on the library

incurs performance degradation due to the file lock contention

» PLFS (Bent 2009]

provides virtual view of the shared file on the file system server

iIncurs metadata stress due to actually employing the N—N pattern

» The PFA mechanism

provides N-1 pattern APIs based on memory—map

works on the file system client

International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31 23

Conclusion

» The N—1 pattern exhibits poor 1/0 performance

Most applications employ the N—N pattern and generate
millions of small files

» PFA (Parallel File Aggregation) Mechanism
It improves [/0O performance of the N—1 pattern

providing N—1 pattern APIs based on memory—map
reducing /0 contention by aggregating [/Os
no file lock

reducing amount of data by incremental logging feature

» The Athena application speeds up 3.8 times than the

original with reducing the number of files by about
100,000 files

International Workshop on Runtime and Operating Systems for Supercomputers 2011 5/31

24

