

Creating Realistic Synthetic Electric Grids to Promote Open Science in Power Engineering

Adam B. Birchfield Dept. of Electrical and Computer Engineering Texas A&M University <u>abirchfield@tamu.edu</u>

Argonne 3rd In-Person Workshop: Foundation Models for the Electric Grid Lemont, IL February 25th, 2025

Test Cases for Power Systems Research

- Power grid data is critical energy infrastructure information (CEII)
- Existing test cases—prior to synthetic grids—are small, simple, and outdated
- Goal of building synthetic power grids is to drive innovation by providing test cases that are large, complex, realistic, and fully public.
- Applications include research, innovation, education, crossvalidation and demonstration

Some existing test cases, such as the IEEE 14-bus (pictured) and 118-bus case, despite their popularity, are known to vary significantly from actual grids.

The U.S. Electric Grid Network

3

Source: US EIA Energy Atlas

Synthetic Power Grids

- Large: This case is 70,000 buses, similar to the actual Eastern Interconnect
- Complex: Multiple interacting voltage levels, remote regulation, capacitors, taps
- Realistic: Matching a large suite of validation metrics against actual systems
- Fully public: It does not correspond to any actual grid or contain any confidential information

electricgrids.engr.tamu.edu

2000-bus synthetic grid on the Texas footprint

How Do We Build Synthetic Grids?

- Substation Planning
 - Start with public data for generation and load
 - Cluster substations, add buses, transformers
- Transmission Planning
 - Place lines and transformers
 - Iterative dc power flow algorithm
 - Match topological, geographic metrics
 - Contingency overload sensitivity
- Reactive Power Planning: Power flow solution (ac), Voltage control devices
- Extensions: Transient stability, geomagnetic disturbances, single-line diagrams, optimal power flow (OPF), time series scenarios, interactive simulations, ...

Synthetic Substation Planning

- Substation planning is seeded by public Energy and Census data
- For large systems, decouple by area
- Modified hierarchical clustering technique combines zip code fragments and generators into substations
 - Use the same technique to assign higher voltage to about 20% of substations
 - Higher load/generation more likely to have higher voltage buses
 - Need cross-area connections for neighboring areas that do not share kV levels
- Economic generation dispatch assuming peak planning load

Synthetic Transmission Planning

- Geography drives transmission planning, and is central to the approach
- Network topology parameters: Graph metrics considering both individual voltage level networks and combined bus-branch topology
- Power flow feasibility: Avoid line limit violations in base and N-1 contingency conditions
- Difficulties for large grids
 - Possible branches is n^2 , possible combinations of branches is intractable
 - Many competing metrics to meet
 - Large grids have many overlapping voltage networks that connect at substations
 - Consideration of contingency conditions increases computation even more
 - Manual adjustments grow with system size

8

Synthetic Transmission Planning, Cont.

- Our solution
 - Reduce search space from n^2 to 21n with Delaunay triangulation (99% of lines < 3 dist.)
 - Begin with randomized graph and iterate toward high-quality network
 - Consider N-1 contingency analysis with DC power flow and overloading sensitivity metric
 - Line "innage" sensitivities rapid to calculate for 100k+ candidate lines
 - Parameterize to get the right balance of fixed cost and network/simulation performance
 - Validate metrics against metrics collected from actual grids

Synthetic Reactive Power Planning

- Flat start often does not converge!
- For real interconnects, start with a prior solution
 - Doesn't work for new synthetic grids
 - Also synthetic grids, without reactive compensation, might not even have a solution
- So what do we do?
 - Since we have a good dc solution, iteratively move from that to a realistic ac solution
 - Add a temporary generator to the highest voltage bus of every substation with 0 MW, controlling the bus voltage
 - Solve the ac power flow solution with this large number of PV buses
 - Iterate over 100 groups, removing most temporary generators and adjusting the others, until the remaining ones become shunt capacitors and reactors.

System Can No Longer Supply Load BLACKOUT!!! Simulation MUST BE ReStarted

9

Synthetic Reactive Power Planning, Example

- 10,000 bus case representing WECC
- Initial power flow solution diverges!
- Algorithm previously described was applied
- 387 shunt capacitors remained for 4762 substations
 - This is 8%, actual grid has 10-20% (good)
- Voltage profile matches actual interconnect observations

Results and Validation

- The results are large, solved power flow cases that do not contain CEII! They are also highly realistic...
- ...how can we show they are highly realistic?
- Complex problem: our validation metrics collected from many actual US electric grid cases help to provide a check on case quality. Because of the variety in engineering design and practice, actual grids are quite diverse. Some metrics:
 - Overall size and structure (ratios of loads/generators/shunts/buses, dispatch, capacity)
 - Device parameters (XFMR reactance, X/R ratio, t-line limits and per-distance Z and B)
 - Network topology (degree distribution, cycle basis, SIL, clustering coefficient, average shortest path length)
 - Technical performance (static N-1 contingencies, voltage profile, loss levels, reactive power balance)

Impact of Synthetic Grids – R&D

- Higher quality, larger, more complex, and more realistic than existing test cases
- Improved ability to cross-validate published research results in power systems literature
- For industry, ability to demonstrate new capabilities for analysis without compromising sensitive data
- Geographic embedding allows connection with other geographically-oriented datasets
- Our more recent work has developed higher quality dynamic models for transient stability and EMT analysis

GMD-induced voltage sag n

Combined T&D Synthetic Grids

M

-94.5

Combined Electric & Gas Grids

14

Transforming Education and Training

Ā M

ARPA-E GO Competition

- Our cases were used in the ARPA-E Grid Optimization (GO) Competition
- Goal was for participants to develop scalable, high-quality SCOPF solvers.
- Our work involved creating difficult, realistic problem scenarios to enable evaluation of competitors
- Much of the data is available on our website

16

- **Summary Thoughts**
- There is no substitute for running studies on the actual grid!
- Synthetic grids are designed to complement real-grid studies and spur innovation with modern, public, high-quality, scalable test cases for power systems R&D and education
- Our synthetic grids are available for your research and we are always looking for feedback to improve them

electricgrids.engr.tamu.edu

