FEBRUARY 10, 2025

POWER SYSTEM RELIABILITY MODELING USING THE ARGONNE LOW-CARBON ELECTRICITY ANALYSIS FRAMEWORK (A-LEAF)

JONGHWAN KWON

PRINCIPAL ENERGY SYSTEMS ENGINEER ELECTRICITY MARKETS TEAM ARGONNE NATIONAL LABORATORY

POWER SYSTEM MODELING

Argonne Low-Carbon Electricity Analysis Framework (A-LEAF)

ADVANCED OPTIMIZATION

- System least-cost planning and operations
- □ Strategic investments
- Sub-hourly dispatch
- Multiday representative periods
- Simultaneous generation and transmission, and storage expansion planning

DETAILED U.S. GRID DATABASE

- Extensive database of 9000+ U.S. generation resources
- Hourly load profiles for 130+ balancing authorities
- User-defined transmission zones at any scale
- □ 200+ zone county-level Texas system

CLIMATE AND WEATHER DATA

- Future weather years derived from climate models
- □ Extreme weather events
- Hourly wind and solar availability for current and future scenarios
- □ Temperature dependent thermal outages

WHOLESALE MARKET DESIGN

- Multi-stage market settlement
- Scarcity pricing mechanisms
- Forward market modeling

POLICIES AND REGULATIONS

- National and local policies and incentives
- Customizable emissions constraints
- Land use restrictions and resource availability

MULTI-SECTOR INTERDEPENDENCY

- Coupling with a global energy systems model (TIMES)
- Water-energy nexus
- Transportation systems
- Natural gas infrastructure

RELIABILITY AND RESOURCE ADEQUACY ASSESSMENT

- Probabilistic reliability assessment
- Capacity accreditation using ELCC
- System inertia requirements

A-LEAF APPLICATIONS

Argonne Low-Carbon Electricity Analysis Framework

ELECTRICITY SYSTEM DECARBONIZATION

- Identify system least-cost decarbonization pathways
- Establish the role of transmission expansion in decarbonized futures
- Establish the role of energy storage in decarbonized futures

WHOLESALE MARKET ANALYSIS

Ð=

('11

- Compare the price and portfolio implications of enhanced scarcity pricing mechanisms
- Explore the implications decarbonization targets and policy incentives

LONG-TERM PLANNING

- Conduct high-fidelity capacity expansion analysis with 5-minute dispatch intervals
- Establish highly-customized multiday periods to capture LDES value
- Evaluate storage value as a transmission asset
- Customize spatial representation to improve computational performance

SHORT-TERM OPERATIONS AND RELIABILITY ASSESSMENT

- Conduct full direct current optimal power flow modeling
- Simulate stochastic resource outages to determine reliability metrics
- Calculate resource effective load carrying capabilities

TECHNOECONOMIC VALUATION

- Assess optimal investment decisions from multiple perspectives: owner/operator, system, society
 Analyze resource revenues from providing capacity, energy
 - Analyze resource revenues from providing capacity, energy, and reserves

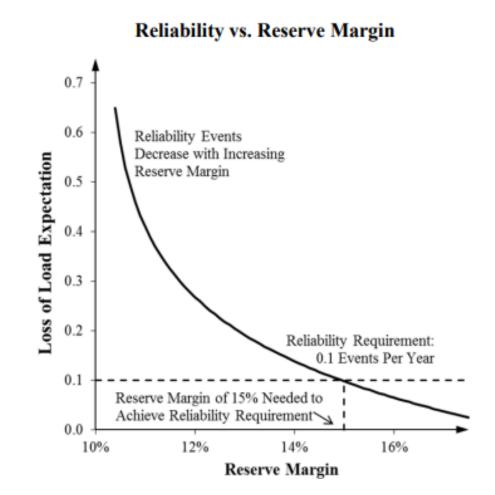
CLIMATE RESILIENCE

- Consider 60+ future weather years with downscaled projections from global climate models
- Identify and analyze extreme weather events and periods of stressed operating conditions

POWER SYSTEM RELIABILITY

- System operators and planners perform long-term and short-term planning studies to maintain a continuous supply of electric energy
 - Society expects high reliability
 - Cost to society is high if there is a blackout
 - Value of Lost Load (VOLL) is often used to estimate the economic impact of load shedding
- System must be able to handle:
 - Contingencies (N-1, N-k, N-1-1)
 - Uncertainty (Load, area-interchange, renewables)

LONG-TERM RELIABILITY CRITERIA


- Loss of Load Expectation (LOLE)
 - Indicates the expected loss of load over a duration (a year, 10 years)
- Loss of Load Probability (LOLP)
 - The proportion of days per year that there is insufficient generation to meet demand
- Commonly used standard: LOLP should be no more than 1 day in 10 years or 2.4 hours/year
 - Generally used to specify that the length of time that generation is insufficient to meet demand should not exceed 1 day in 10 years

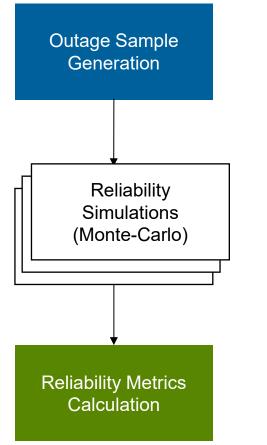
LONG-TERM RELIABILITY CRITERIA

- System-wide and regional reliability metrics (EUE, LOLP, and LOLE) are widely used to inform system planning and market designs.
 - Planning reserve margins
 - Capacity market demand curves
 - Operating reserve demand curves

RELIABILITY ASSESSMENT MODELS

Industry Status Quo

- -PJM: Probability Reliability Index Model (PRISM), Multi-Area Reliability Simulation (MARS)
- -NYISO, ISO-NE: MARS
- —MISO: MARS, Strategic Energy & Risk Valuation Model (SERVM) —ERCOT: SERVM

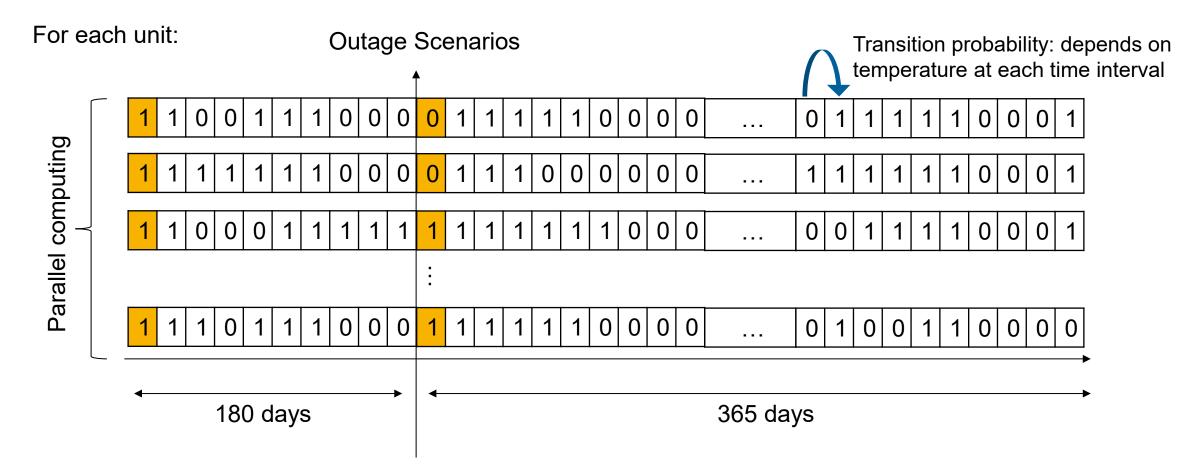

Challenge:

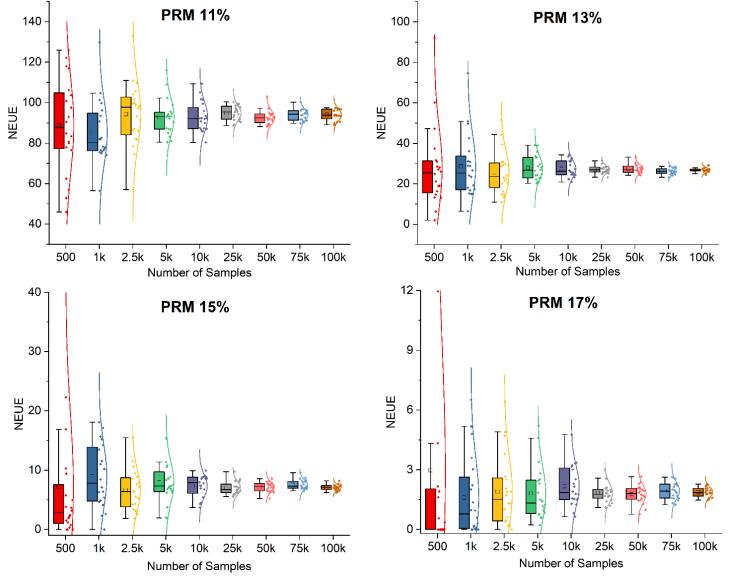
- -It is important to achieve a balance between detail and computational tractability.
- -Limited attention has been given to understanding how different modeling assumptions and methods affect reliability metrics.
 - Risk sample size
 - Filtering methods
 - Post-contingency scheduling algorithm

A-LEAF PROBABILISTIC RELIABILITY ASSESSMENT MODEL

- Temperature-dependent generator outage sampling that utilizes a Markov chain approach to model generator state transitions

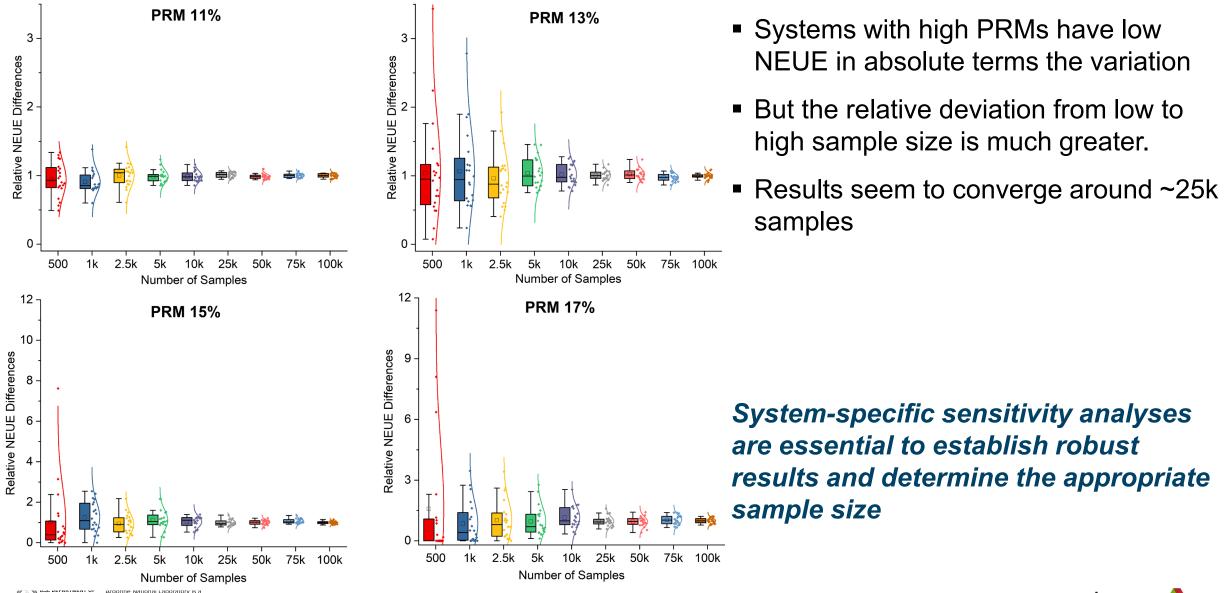
 Sampled hourly over a full year (e.g., 10k samples for each unit for 8760 hours)
- Efficient sample filtering method to reduce the number of risk samples requiring dispatch simulations while maintaining the accuracy of resulting reliability metrics
- Two-stage system dispatch simulations with and without perfect foresight
 - First stage: Steady-state system operations
 - Second stage: Realization of system risks and post-contingency system redispatch


- Determines a range of metrics to evaluate system performance.
 - EUE, NEUE, LOLH, LOLP, and LOLE.
 - Indicators of outage severity (e.g., the maximum consecutive hours with load shedding, and the maximum load-shedding capacity in MW and MWh).

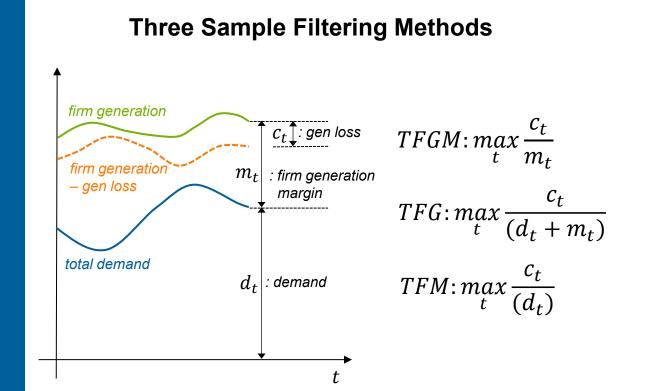

OUTAGE SCENARIO GENERATION

Markov model to simulate weather-dependent forced outage events

THE IMPACT OF SAMPLE SIZE ON RA METRICS

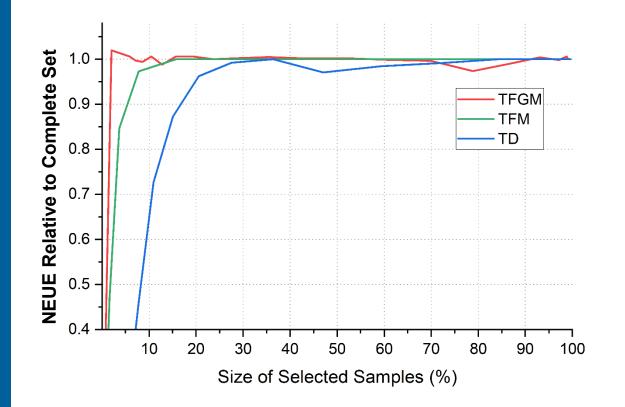


- We assess
 - 4 different PRM levels
 - 20 independent simulations for each sample size
 - No filtering
 - Applied to "ERCOT-like" system
- Across all PRM levels, the variability of NEUE decreases across batches as the number of samples increases.
- Smaller sample sizes cause high variability in absolute EUE values
 - -Especially at lower PRMs.



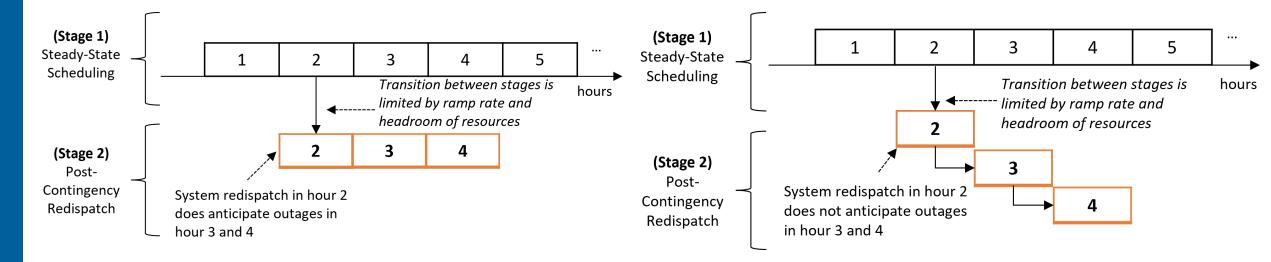
THE IMPACT OF SAMPLE SIZE ON RA METRICS

ENHANCING EFFICIENCY IN RELIABILITY ASSESSMENTS THROUGH SAMPLE FILTERING



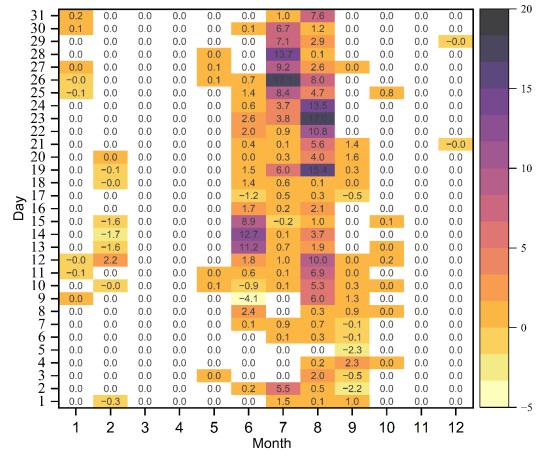
- Simulating a large number of risk samples is challenging even with high-performance computers.
- This study evaluates the performance of sample filtering methods:
 - *TFGM*: based on total firm generation margin
 - **TFG**: based on total firm generation
 - TD: based on total demand

ENHANCING EFFICIENCY IN RELIABILITY ASSESSMENTS THROUGH SAMPLE FILTERING


- Three filtering methods are applied to a full year
 - **TFGM**: based on total firm generation margin
 - **TFM**: based on total firm generation
 - TD: based on total demand based
- Referencing the firm generation margin captures more relevant information about the systems' reliability margin and outperforms other methods.
- System NEUE was predicted with reasonable accuracy when only simulating ~5% of total outage draws

Sample filtering can improve the efficiency of reliability assessment models while preserving accuracy

RELIABILITY SIMULATIONS OVERVIEW


Two-stage structure with perfect foresight

Two-stage structure without perfect foresight

THE IMPACT OF IMPERFECT FORESIGHT ON RA METRICS

Careful modeling and design of system dispatch algorithms is essential as they can significantly impact reliability outcomes

- Finally, we compare two post-contingency redispatch methods 1) with and 2) without perfect foresight.
- The imperfect foresight case shows that operational uncertainty leads to higher EUE values.
 - Particularly in high-demand periods.
- Perfect foresight post-contingency dispatch models may therefore overestimate system reliability.

Metrics	w/ Perfect Foresight	w/o Perfect Foresight	Difference (%)
EUE (MWh/year)	3,561.7	3,831.6	7.6%
NEUE (ppm)	8.0	8.6	7.6%
LOLH (hours)	2.3	2.5	8.5%
LOLE (hours/year)	0.00027	0.00029	8.5%
Max MW Loss	7,945.3	7,985.5	0.5%
Max MWh Loss	62,293.3	62,701.7	0.7%
Longest Outage (h)	13.0	13.0	0.0%

CONCLUSION

- The reliability assessment model samples generation outages and perform Monte-Carlo simulations to evaluate power system reliability levels.
- Our recent study highlights that an adequate number of samples is critical for accurate reliability studies; however, computational limitations remain a challenge.
 - Additional uncertainties (transmission lines, renewable availability, etc)
 - System dispatch logics
- AI has the potential to enhance reliability assessments.
 - Additionally, the reliability model can serve to provide training data

