

KEEPING DATA PRIVATE WHILE LEARNING TOGETHER: ADVANCES IN PRIVACY-PRESERVING FEDERATED LEARNING FOR THE GRID

KIBAEK KIM

Computational Mathematician Mathematics and Computer Science Argonne National Laboratory

February 11, 2025

MOTIVATION AND CONTEXT

Why Privacy-Preserving Federated Learning for the Grid?

- **The Problem:** Grid operators, utilities, and researchers need to train models collaboratively while ensuring data privacy.
- The Challenge: Sharing raw data across multiple entities is not an option due to privacy concerns.
- The Solution: Federated Learning (FL) allows multiple stakeholders to train models without sharing their data.
- Why Now?
 - Increasing cybersecurity & privacy concerns
 - Advances in FL + AI enabling real-world deployment

X Traditional ML	Federated Learning
Data sent to central server	Data stays local
One central dataset	Distributed datasets
Privacy risk: Raw data exposed	Privacy-preserving: No raw data transfer
High bandwidth usage	Low bandwidth usage

WHAT IS FEDERATED LEARNING?

Federated Learning: Enabling Collaborative Al Without Data Sharing

- Federated Learning (FL) Basics:
 - Data stays local (trained on edge devices or servers).
 - Only model updates are shared with a central aggregator.
- Benefits:
 - Privacy: Raw data never leaves local sites.
 - Efficiency: Reduces bandwidth and data movement.
 - Scalability: Works across multiple grid operators & industries.
- Most widely used FL Algorithm: FedAvg (introduced in 2016, still widely used today)
- Our Contribution: APPFL
 - Open-source FL framework for privacy-enhancing techniques.
 - Supports deployment across HPC, cloud, and edge devices.

PRIVACY RISKS & SOLUTIONS IN FL Protecting Data Privacy in Federated Learning

- The Risk: Even without raw data, attackers can reconstruct data from gradients.
- Key Privacy-Preserving FL (PPFL) Techniques:
 - Differential Privacy (DP): Adds noise to model updates.
 - Secure Multiparty Computation (SMPC): Encrypts updates to prevent reconstruction.

Weaker Privacy

Stronger Privacy

OPEN-SOURCE PPFL FRAMEWORK

Advanced Privacy-Preserving Federated Learning

- APPFL v1.3.0:
 - Open-source FL software for PPFL research & deployment
 - First release: Feb. 2022
 - Available in Github
- Supports:
 - Privacy (DP, HE, SMPC)
 - Heterogeneous computing (sync & async updates)
 - Scalable deployment (HPC, cloud, edge devices)
- Extensively tested on: DOE supercomputers (ALCF, OLCF, NERSC, ESnet FABRIC), Argonne's edge devices

train more robust ML models.With this framework, developers and users can easily

COMPARISON OF OPEN-SOURCE FL SOFTWARE Key Capabilities Across FL Frameworks

APPFL v1.x stands out with enhanced support for privacy, asynchronous algorithms, and versatile communication, advancing beyond APPFL v0 and other platforms.

PROGRESS IN FOUNDATION MODELS FOR THE GRID GNN Foundation Models for Electric Grid Operations

- Why Graph Neural Networks (GNNs) for the grid?
 - Grid operations depend on topological relationships
 - Traditional ML fails to generalize across grid configurations
- Current Work:
 - Training graph-based foundation models across different grid topologies
 - Goal: Integrate PPFL with these models

CASE STUDY: TIME SERIES FL FOR BUILDING ENERGY Federated Learning for Building Energy Forecasting

- Data: Electricity consumption from 42 buildings in CA, IL, NY.
- Challenge: Heterogeneous patterns across buildings.
- **Model:** Attention-based LSTM (long short-term memory) neural network architecture with personalized layers.
- Results:
 - Personalized FL achieves the lowest error.
 - **PPFL** successfully integrates to ensure data privacy.

FOUNDATION MODEL FOR BUILDING LOAD FORECASTING

TimesFM: A Foundation Model for Time Series Outperforms State-ofthe-Art Methods

- What are Foundation Models?
 - Trained on vast, general-purpose data before being fine-tuned on task-specific datasets.
 - Pre-training on diverse data leads to significant performance gains in downstream tasks.
- Applying TimesFM for Load Forecasting:
 - Federated fine-tuning of foundation models (e.g., Google TimesFM) is a promising approach for building-level load forecasting.

COMPUTING AT SCALE: RUNNING FL ON DOE SUPERCOMPUTERS

Scaling PPFL on High-Performance Computing (HPC) Infrastructure

- Where We Run Our FL Models:
 - ALCF Polaris
 - OLCF Frontier
 - NERSC Perlmutter
 - ESnet FABRIC Testbed
 - NCSA Delta
 - Many other clusters and clouds
- Lessons Learned:
 - FL scalability challenges in large systems
 - Need for adaptive scheduling & asynchronous updates

NEXT STEPS

Bringing PPFL to Grid Foundation Models

- Immediate Goal:
 - Run PPFL on GNN-based grid foundation models
- Challenges:
 - Adapting PPFL techniques to large-scale AI models
 - Interoperability between FL systems and grid operators
- Call for Collaboration:
 - Interested in testing PPFL in industry and national lab settings?

Near term	Mid-term	Long-term
APPFL on DOE HPC Baseline Privacy Techniques	Advanced Privacy Technique PPFL for Real-time Operations	Industry-wide Adoption Deployment-Ready PPFL Models
GNN-based FMs	Federated Fine-Tuning of FMs across Operators	Continual Adaptation of FMs
Scaling FL on HPC/Cloud	Cross-Institution PPFL	Self-Improving FL Ecosystem Policy/Regulatory Alignment

DISCUSSION / Q&A

Open Discussion & Collaboration Opportunities

- How can federated learning benefit your work?
- Are there specific technical, regulatory, or adoption challenges that need to be addressed?
- What would make utilities or grid operators more willing to adopt PPFL?
- What privacy concerns do you see in grid applications?
- Are there additional industry/national lab partners interested in PPFL testing?

ACKNOWLEDGEMENTS

- DOE ASCR Early Career Research Program (2019 2024)
- DOE ASCR PALISADE-X Project (2022 2024)
- DOE ASCR EXPRESS (2023 2024)
- DOE ASCR Resilient Distributed Systems (2024 2028)
- DOE ASCR AI4S (2025 2027)

Collaborators:

THANK YOU

www.anl.gov