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Why all this interest?
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But walit a minute..
Al 1tself poses yet another major
challenges to the power grid
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AI Data Center Power Demands are growing
rapidly adding to the complexity and
uncertainty of the electric grad

% OF 2030
ANNUAL ELECTRICITY
ATE  CONSUMPTION

Low growth 7% 4.6%

Moderate growth % 5.0%

High growth % 6.8%
Higher growth

Average historical data

0
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v ATl pretraining as a dispatchable load (distributed energy resource)
v Inference as a non-dispatchable (consumer driven) load



Why did we think that AI Foundation Models
are a good 1dea Tor power grids?

ATl Foundation
Models excel 1n

* Predicting the next data
“"token” based on context

« Homogenization
and adaptability

e Massive Acceleration
of simulations
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Why did we think that AI Foundation Models
are a good 1dea for power grids?

ATl Foundation
Models excel 1n

Predicting the next data

“"token”

based on context

Homogenization

and

adaptability

Massive Acceleration
of simulations

Enabling
tech

Attention /
transformer
architectures

Previous
Work (Geospatial FMs)

Self-
Supervision, big
data & pervasive

compute

Excellent spatial &
temporal reconstruction performances

Deep networks
to map directly
inputs to
outputs

Adaptable to multiple downstream applications
Improved data efficiency ana accuracy

« 10° acceleration for weather
forecasting compared to simulations



Why did we think that AI Foundation Models
are a good 1dea for power grids?

AI Foundation Enabling Opportunities

Models excel 1n tech to power grids
* Predicting the next data Attention / e Power flow
“token” based on context transformer * Load and renewable forecasts
architectures « State estimation
Homogenization Self- « Scaling across different grids
and adaptability Supervision, big « Collaboration platform
data & pervasive .
compute
» Massive Acceleration Deep networks * (N-k) contingency analysis with k>1
of simulations to map directly « Co-simulations for transmission & distribution
inputs to « Transients and Optimal Power flow

outputs » Accelerated interconnection studies



Steps to define GridFM-vO




The answer we came up with: FM pretrailned
tor power Tlow

(Optimal) Power
Network Flow Unit commitment
PMU/RTUs/SCADA Economic dispatch

T AGC, Demand Response, Voltage/Var dispatch/control

Expansion plannin S Adequacy Stability
i i ° Analysis Analysis Analysis

Load Outage Renewable Generation
(Forecasting) (Prediction) (Forecasting)
T A ry

e

Power flow estimations are at the core of operating,
controlling and planning the electric grid



Humbled beginnings: GridFM-vO
pretrained on power flow data
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Puech, Alban, Jonas Weiss, Thomas Brunschwiler, and Hendrik F. Hamann.

Line
"Optimal Power Grid Operations with Foundation Models." arXiv preprint
arXiv:2409.02148 (2024) .




We are starting with
public grids..

« IEEE 14-Bus System
« IEEE 24-Bus System
« IEEE 30-Bus System
« IEEE 39-Bus System
« IEEE 57-Bus System
« TEEE 118-Bus System
« IEEE 300-Bus System
« GB network

« ACTIVSg200

« ACTIVSghOO

« ACTIVSg2000

« ACTIVSglO0k

« ACTIVSg25k

« ACTIVSg70k




Pretraining Data Generation for GridFM-vO
Trom public grids
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Self-supervised pretraining with
Masked Autoencoder

/,> Data <\\ ////' Masking ‘\\\\ //’7 GridFM-vO ‘\\\ //’7 Physics-informed ‘\\\

normalization pretraining loss functions

P MR Py MV 0)s 0 (Pa 90l a1 8) 7

Jl (pd:.: pg: qg: vr.)Z' t1l (pd,.,., 5)3' t1 _’ qd, v’.)é' t
L,‘ en
S; = Sig _ Siload — Sitrans

TransformerConv
Base MVA. p.u. Each node feature is being (Graph Neural L'=wilyse + walppe
system masked with 0.5 probability Network)

Linear combination of
\\‘ A// \\\\‘ A’/// \\\‘ A’// \\\‘MSE and power 1ooi’//




Masking for pretraining
and finetuning
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Can GridFM-vO generalize to new grids?

%
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v Pre-training on five small networks (total of 75k load scenarios)

v’ Fine-tuning on larger network (18k load scenarios)




Accelerated convergence and 1mproved
data efficiency achieved by pretraining

Convergence speed Data efficiency

—— Original fine tuning data
90% fine tuning data

— pretrained model

specialized model
—— 70% fine tuning data

—— 50% fine tuning data
—— 30% fine tuning data
—— 10% fine tuning data

Validation Loss

v
0
o
a
c
o
2
[}
2
<
=

.

T T T T
0 20 40 60
Epoch

« GridkFM-v0O converges faster during finetuning than specialized supervised model
« Readily adaptable to 2000+ grids in the US alone




Farly results - GridFM emulates power Trlow Trfaster
..and even better than DC solvers
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@ DC solver
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Can't I do all this with ChatGPT?

Grid Connection: ChatGPT ol

- Voltage: 1.02 pu
We want to learn more about a three-bus electrical network. The

Voltage Level: 20KV Transformer- first bus has a voltage level of 20kV and is connected to another

ST : leasoned about voltage at bus 3 for 4m 57s
- Transformer Ratio: 20 / 0.4 kV grid with 1.02 pu voltage. The second and third bus have a voltage [ Reasoned about voltage at bus 3 for 4m 5 ]

- Rated Power: 400 kVA . . : . : . n u .
- Short Circuit Voltage: 6 % level of 0.4kV. There is a load connected to bus 3 with 100kW of Below is a straightforward way to arrive at an approximate “"one-shot” load-flow solution for the voltage

- Short Circuit Voltage (real part): 1.425 % active power and 50kVar of reactive power. There is a transformer, at the 0.4kV load bus (bus 3). The key idea is to refer everything to the low-voltage (LV) side of the

- Open Loop Losses: 0.3375 % . . .

_ FronTosses: 1,35 kW which connects between bus 1 and bus 2, which has a ratio of 20 /
0.4 kV. The maximum rated power is 400 kVA. The short circuit

voltage is 6% with the real part of 1.425%. The open loop losses

Voltage Level: 400V i transformer, treat the external 20kV system (bus 1) as an ideal 408V source® in series with the

Line: transformer impedance, then include the cable impedance out to bus3. You can then apply standard

- Length: 100 m
Cable Type: NAYY 4x50 SE are 0.3375% and the iron losses are 1.35 kW.
g:ﬁ?{:’(cg 866;323/}5:1 There is a cable line of 100m between bus 2 and 3. The cable type
- Capacity: 210 nF/km is NAVY 4x50 SE. The resistance, reactance, capacity of the cable is
Max. thermal current: 142 A . .
- Termat cdrren 0.0642 Ohm, 0.0083 Ohm and 21 nF, respectively. The maximum

thermal current is 142 A. Can you compute the voltage magnitude

radial “back-of-the-envelope” formulas for voltage-drop with a lagging-power-factor load.

Voltage Level: 400V Load:

- Acitve Power: 100 kW
v - Reactive Power:50 kVar

and angle at node 37

1) System data referred to the 0.4kV side 2) Load at bus 3 3) Approximate radial drop calculation 4) Representative final answer

1. Nominal LV voltage: The 3-phase load is A common approximate formula for the magnitu oltage drop AV in a line o transformer with Putting this il together:

Viow,Lv = 400V (line-line) P = 100kW, Q = 50kvar S =100 + j 50kVA ~ 112kVA. ) ’ * Bus3 magnitude: about 395-396V (line-line). ie. 0.988-0.99 p.u. on 3 400V base.
- I(Rcosyp + X sing) . " . ¢ elative 16 the HV-cide reference i we take

Because the 20KV side is at 1.02p.u., i.e. 204KV, the no-loc e would be at At about 400V (line-line), the load current magnitude is Bus3 angle: about ~0.1° to ~0.2° relative to the HV-side reference (if we take bus 1 at 07).

ere:

20.4kV / 50 — 408V (line-line) S 112,000 VA 161A A more detailed, fully iterated AC lcad-flow would give very nearly the same result for such a small

Vi V3 x 400V b1 £ o The total Reg = 0.0057 -+ 0.0642 = 0.0699 2 radial system

So, for lo ! 5 ce on the :

Srintcs eont 5 5 o The total Xeor = 0.0233 + 0.0083 = 0.0316 2.

LV side, if there is no tran: ve add in the transformer mpedance se the load is inductive (P/Q = 2), the power factor is

2. Transformer short-circuit impedance (referred to LV P 100 0:804 Hence, with I =~ 161 A and cos p = 0.894, siny = 0.447,
et ~ 0,894,

o Rated power: Sy — 400kVA. N AV, ea — 161 (0.0699 x 0.894 0.0316 x 0.447)
o Percent impedance: Z, = 6%, with the real part Ry, = 1.425% 50 ¢ & 26° (lagging), Compute inside Since the H p.u. on @ 20KV base) and the nominal transformer ratio is
S A R e 20kV:0.4KkV =50:1, 1 LV side would be at
MG BV SOE.DA56, e, nonie trandioe , o 0.0699 x 0.894 = 0.0625,
7 A / 204kV .
Z; = 0.06 X Zise,Lvs o 0.0316 x 0.447 ~ 0.0141, g 408V
5

0.4AMVA

o sum = 0.0766,

Hence one can model "bus1” as a 4 stiff source in series with the transformer short-circuit

Zy = 0.06 x 0.4 — 0.024Q multiply by 161A =~ 12.3V impedance (0.0057 +j0.02330 on the LV side). Then the cable is in series to bus 3,

of which the real partis 0.01425 p.u. — 0.01425 x 0.4 = 0.0057 £2 and the reactive part he no-loa we subtract the drop of about 12-13V. This g bus3 voltage
is 1/(0.024)% — (0.0057)% = 0.0233 2. 7 i
3. Cable data (bus2 to bus 3, 100m); Vs 408V 123V 395.7V
; ~ 408 2.3V =~ 395.7
* R.=0.06429, X, = 0.0083Q.
a 400V base, that is
o The capacit nt is negligible at this age/s s usually omit it in a
395.7

100

simple radia 0.989.

ence, on the LV side we have an “ideal” 408V source in series with - . 400\
Hence, on the LV have an “ideal” 408V.source in series with at is only about a 1 percent dip from nominal 400V

Zyx = 0.0057 + j0.0233Q and Zgg — 0.0642 + 50.0083 12, 55 01 pedances (and at only

the |
leading to bus2, then the cable out to bus3

0.2° referre:

Unfortunately, wrong result but still impressive...



GridFM Roadmap: from POC to hardened implementation

.. towards general grid intelligence (GGI)

Base-GridFM Extension

Real-World Data Tooling

Base-GridFM

Data & Model Hygiene

Applications & Tasks

Methods to share sensitive

data:

¢ Generative models

+ Differential-privacy
Federated learning

Defense against model

attacks:

* Modelinversion attack

Establish down-stream tasks
and benchmarks:

* Power Flow

» State Estimation

» Contingency analysis

+ Cascading failure

Implement tools to support

model up-take, dev.

experience:

* low-code GridFM tooling

* model life-cycle
management

+ scalableinference

Curate pre-training and fine-

tuning data sets:

 diverse grids and operation
scenarios incl. edge cases

» sampling reshape training
data distribution

+ labels for applications

Reconstruction of bus-
variables based on synthetic
data with physics-informed
loss for many topologies with
local attention

Proof-of-concept
Hardening
Governance
Operations

Proof-of-generalization

Demonstrated GridFM KP/I’s:

* Reconstruction capability

* Generalization across topologies
* Inference speed-up

* Data efficient fine-tuning

IBM Research / © 2025 IBM Corporation 22



Grid Foundation Model Lite-Cycle

Diverse Data Quality Bus Pre-trained Reconstructed
Data Set Requirements Masking Foundation Models Input
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LLM vs. Scientific FMs: same-same but different

Attributes of Scientific FMs :

i)  They are orders of magnitude small compared to LLMs,

i) they do notneed 10’s of thousands of GPUs to be trained and

iil) their training data volume is much larger than the model size — they
may not have the capacity to memorize “all” the data.

iv) The fine-tuning of a Scientific FM requires typically only one GPU!

1GPU
600 50 0.0(?1 model/train-data
o Million @ SAM Million . GridFM
I:]afmg]rgedat?é B Pre-training run
¥ ~25’000 GPU ici : H
ore-processed ~3 T8 o day: Vision FM Electric Grid FM
- Model size to training data ratio: 1
(GPT-3:0.6)
30
ilion viion & Chronos
MovieGen lion & LAro
. Time-Series FM
Gen-Video FM e-Serles

Weight count ~1’500 Billion 64 GPUs
Model size ~2.8 TB )3 0.001 model/data
silion @  Prithvi-WxC
Large Language Model Weather FM

IBM Research NLP & Vision Models Scientific Models 24



Privacy & Data Protection Methodologies

Anonymization of Sensitive Data Mitigate Transfer of Sensitive Data
Differential Privacy Federated Learning
Perturb sensitive data while maintaining Distribute Model Training

statistical utility

Central Model
' it Transfer of
Was Alice tested positive? \ :
weights or
Database /)/@ / '\WEight updates
Bob ’ . s %/ o '&\
_ Heads: Tail: ] \ © o4 ‘
Alice  n true answer Depends on e e 2 -
Otto  n | second coin flip \ \ \
no v v
Heads:  Tail: g G g
yes no CEL EEEN. CEE
I N w L& B |

IBM Research / © 2025 IBM Corporation 25



GridFM Roadmap: from POC to hardened implementation

.. towards general grid intelligence (GGI)

Base-GridFM Validation

Base-GridFM

Reconstruction of bus-
variables based on synthetic
data with physics-informed
loss for many topologies with
local attention:

+ topology agnostic

+ speed-up

+ performance increase to DC
+ data efficiency

Proof-of-concept

Applications & Tasks

Establish down-stream tasks
and benchmarks:

* Power Flow

» State Estimation

» Contingency analysis

+ Cascading failure

Proof-of-generalization

GridFM Family Extension

Base-GridFM+

Advanced model architectures:

* Alternative data representation
& tokenization

» Scalable local-global attention

Forcast-GridFM

Temporal reconstruction:

* Look-ahead power flow & state

Model coupling & multi-modal

data (time-seriesFM, weatherfFM,

LLM):

* Load & renewable generation
forecasting

IBM Research / © 2025 IBM Corporation

Hardening

Real-World Data

Curate pre-training and fine-

tuning data sets:

 diverse grids and operation
scenarios incl. edge cases

» sampling reshape training
data distribution

+ labels for applications

Governance

Data & Model Hygiene

Methods to share sensitive
data:

¢ Generative models

+ Differential-privacy

* Federated learning
Defense against model
attacks:

* Modelinversion attack

Operations

Tooling

Implement tools to support
model up-take, dev.

experience:

low-code GridFM tooling
model life-cycle
management

scalable inference

26




Foundation Model Coupling & Worktflows

Large-Language Model

i1

Feature mining from

news & social media 7

Advanced text understanding

1€ 4017 40!
000000000

Weather Foundation Model

* Now-casting
* Down-scaling
* Extreme events

'J)ﬁ

i e
. ,\7"-
R 777 Nz, 47

10’000x speed-up

IBM Research / © 2025 IBM Corporation

—>

Exogenous
factors

z

Renewable
forecasting

—>

Time-Series Foundation Model

Forecast

Historicalcontext ... horizon
5 /i
Target p ’
§: i Multivariate time
gicondtonal series estimations
Exogenous \
3..@.9'3}.@.1. ............................. YPTPrrrPr

Zero-shot capability

Load

Grid Foundation Model @ forecasting

Grid related fore-
casting tasks

27



GridFM Roadmap: from POC to hardened implementation

.. towards general grid intelligence (GGI)

Base-GridFM Validation

Base-GridFM

Reconstruction of bus-
variables based on synthetic
data with physics-informed
loss for many topologies with
local attention:

+ topology agnostic

+ speed-up

+ performance increase to DC
+ data efficiency

Proof-of-concept

Applications & Tasks

Establish down-stream tasks
and benchmarks:

* Power Flow

» State Estimation

» Contingency analysis

+ Cascading failure

Proof-of-generalization

GridFM Family Extension

Base-GridFM+

Advanced model architectures:

* Alternative data representation
& tokenization

» Scalable local-global attention

Forcast-GridFM

Temporal reconstruction:

* Look-ahead power flow & state

Model coupling & multi-modal

data (time-seriesFM, weatherfFM,

LLM):

* Load & renewable generation
forecasting

Real-World Data

Curate pre-training and fine-

tuning data sets:

 diverse grids and operation
scenarios incl. edge cases

» sampling reshape training
data distribution

+ labels for applications

Hardening

Optimal-GridFM

Optimal Power Flow:

reconstruction under constraints

and objective:

* Loss encoded constraints &
objective

* Reinforcement learning

Data & Model Hygiene

Methods to share sensitive
data:

¢ Generative models

+ Differential-privacy

* Federated learning
Defense against model
attacks:

* Modelinversion attack

Governance

HighRes-GridFM

Model to deal with spatio-

temporal data enabling:

+ Instability localization &
anomaly detection from PMU
data

» Disaggregation (super-
resolution) from AIM and PMU
covariates

Advisor-GridFM

Tooling

Implement tools to support

model up-take, dev.

experience:

* low-code GridFM tooling

* model life-cycle
management

+ scalableinference

Operations

Scenario analysis by chain-of-
thought, agentic workflows:

* Remedial-action

» Expansion planning

* Explainable Al

IBM Research / © 2025 IBM Corporation
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let’'s scale the Models

and enjoy the Workshop!
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