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INTRODUCTION
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This talk highlights a subset of the AI-for-Cosmology efforts at Argonne.  

Common themes here are:  
• Synthetic/simulation datasets and their connection with real astronomical 

observations. 
• Science requirements:  

• Bayesian/probabilistic schemes rather than point-predictions. 
• Explainability of the AI algorithms. 
• Physics inclusion 

Case study: 
• Image processing pipelines for de-noising, de-blending etc. 
• Probabilistic classification and regression 
• Latent space exploration



SHORT INTRO TO COSMOLOGY
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Credit: nasa.gov

Source: open.edu 

https://map.gsfc.nasa.gov/media/080998/index.html
https://www.open.edu/openlearn/science-maths-technology/science/physics-and-astronomy/history-the-universe-timeline


STUDYING THE UNIVERSE: JOINT EFFORTS
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NASA - SPHEREx 

VERA RUBIN OBSERVATORY 

Zavala, J.; Frenk, C.S. Dark Matter Haloes and 
Subhaloes. Galaxies 2019, 7, 81.



CAVEATS IN COSMOLOGICAL STUDIES
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• Multi-modal data: 
• Graphs, images, time-series, 

summary vectors, scalars, text.  
• Expensive: 

• Both simulations and observations 
are from expensive science 
campaigns 

• Multi-fidelity: 
• Data from different sources have 

different resolutions, approximations 
and systematic effects.  

• Transfer of knowledge is not 
straightforward.  

• Data coverage: 
• Gaps, biased datasets are common. 

No assumption of a ‘fair’ sampling.  

• Analysis requirements 
• Precision cosmology has high 

error requirements 
• Traditional statistical analyses 

have been highly successful.  
• Prior domain knowledge: 

• Studies assume known physics, 
conservation laws. 

TRAIN
TEST
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P(θ |D) ∝ ℒ(D |θ)P(θ)

ℒ(D |θ) ∝ exp −
1
2 ∑

i, j
(D − f (θ))i

C−1
ij (D − f (θ))j

MCMC sampling 
for PLACK/WMAP 
data 

GP-VAE emulated spectra 
as a forward model

NR, Mickael 
Binois et al

A FEW EXAMPLES: BAYESIAN INFERENCE 
WITH EMULATORS



A FEW EXAMPLES: FINDING UNKNOWN UNKNOWNS OBJECTS 
IN THE SKY
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Synthetic 
data

Telescope 
data

https://arxiv.org/abs/2012.08082
GAN-based 
Anomaly finder

Subaru 
telescope 
data



A FEW EXAMPLES: MULTI-MODAL FOUNDATION MODELS 
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Synthetic 
data

Telescope 
data

Mapping between different modes 

• Foundation models (like Large 
Language models) encode diverse 
data into a cohesive representation 
space  

• Going beyond text is the next frontier 
— unique problems arise in scientific 
datasets. 

• Foundation models are  
designed to work on tasks 
that are not pre-defined — 
a major paradigm shift in AI 

PRELIMINARY WORK

PRELIMINARY WORK



CASE STUDY: GALAXY-SCALE STRONG LENSING
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• Strong-lenses are rare objects.  
• But understanding them is key to 

several questions: Distribution of 
dark matter, expansion of the 
Universe.  

• Discrepancy with current amount of 
observed data vs future data 
• Observed data is/will be a highly 

imbalanced dataset 
• Tractable physical models



INTERPRETABLE LEARNING PIPELINES 
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Detection YES

DeblendingDe-noising

Yes

NO

Regression

• Each AI-module is independently trained and validated. (Super-resolution 
modules for Denoising and deblending, Information bottleneck design for 
detection and regression) 

• Synthetic data allows one to train modular pipelines that enable better 
control over systematics than end-to-end training methods



INTERPRETABLE STRONG LENS END-TO-END ANALYSIS 
PIPELINE 
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Sandeep Madireddy, NR et al: 
arxiv.org:1911.03867

https://arxiv.org/abs/1911.03867
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Variational 
Information 
Bottleneck  and 
representation 
learning

Uncertainty quantification 
for classification



• Cosmological studies involve variety of data modalities, with vast amount of 
data. This makes data-driven AI-models extremely valuable.  

• Synthetic datasets are often a necessity in Cosmological analysis.  

• Careful experimental design, robust data creation, extensive validations are 
all required while dealing with synthetic data. 

• Interpretable, uncertainty quantified models are still very important, probably 
even more so while using synthetic data in training.

CONCLUSIONS
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