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Executive Summary
On behalf of the National Science Foundation’s Office of Advanced Cyberinfrastructure (OAC) and the
Department of Energy’s Advanced Scientific Research Computing (ASCR) program, a National Artificial
Intelligence Research Resource (NAIRR) software workshop was held at Argonne National Laboratory on
December 3–4, 2024.

The workshop focused on identifying a feasible artificial intelligence (AI) software stack, or set of stacks, com-
prising computer programs, training and inference frameworks, libraries, user interfaces, data management,
debuggers, and performance tools, to be made available to the broadest possible community. A key objective
was determining the feasibility, essential components, and future research and development needed to sustain
a long-term NAIRR effort. This effort, expected to launch in 1 to 1.5 years and target a 5-year horizon, will
rely on robust software solutions that meet the evolving needs of the high-performance computing (HPC)
and AI communities.

The workshop was organized by a technical steering committee with members from universities, national
laboratories, and industry. More than 120 researchers, engineers, and educators from diverse organizations
participated in the event. Over the course of two days, attendees took part in a keynote address, multiple
invited talks, several breakout sessions, and a concluding panel discussion.

The key conclusions from the workshop are as follows:

1. The NAIRR stack needs to leverage existing and emerging software solutions, catering to a
range of users (from novices to experts) across diverse hardware platforms and accelerators, including
those used for education. Notably, the HPC community views these solutions as a layered software
stack optimized for performance and scalability. In contrast, the AI community often refers to a
broader software ecosystem that tightly integrates data, user support, and training frameworks. The
NAIRR effort must bridge these perspectives to effectively serve all stakeholders.

2. The NAIRR stack must respond to the evolving needs of the scientific and AI com-
munities, including real-time data analysis, privacy and security challenges, and portability across
emerging AI hardware. Data management, which encompasses cleaning, curation, and annotation,
must ensure that researchers can fully leverage the growing volume of diverse datasets.

3. The following components of the NAIRR stack must remain flexible and extensible to accom-
modate future technology advances: operating systems; middleware solutions for communication and
resource management; languages and compiler support (with emphasis on Python, Julia, C, C++,
and Fortran); workflow managers; and AI-related libraries, models, and frameworks, including HPC
software that can be leveraged and/or enhanced through AI.

4. The NAIRR stack must embrace open-source development and ensure compatibility with new
hardware to remain at the forefront of technological advancements.

5. The NAIRR stack must deliver user-friendly interfaces (e.g., Jupyter Notebooks, web-based
platforms) to significantly lower barriers for newcomers to AI. Moreover, comprehensive training
and robust ongoing user support must be seamlessly integrated into the software, highlighting the
critical importance of accessible educational resources and dedicated guidance to empower new users
in effectively navigating this technology.

6. The NAIRR stack must address immediate user-support needs; for instance, funding small
supplements for current grantees during the NAIRR Pilot was proposed. Attendees also recommended
creating intuitive chatbot interfaces to help users interact with the software stack, further reducing
barriers to adoption and ensuring efficient troubleshooting and assistance.
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1 Introduction
The National Artificial Intelligence Research Resource (NAIRR) Task Force identified the need to democra-
tize access to artificial intelligence (AI) resources that have traditionally been limited to large organizations.
The Task Force’s 2023 report, Strengthening and Democratizing the U.S. Artificial Intelligence
Innovation Ecosystem: An Implementation Plan for a National Artificial Intelligence Re-
search Resource, underscored the importance of creating a broad AI ecosystem that fosters innovation,
enhances engagement for all, and ensures fair access to AI capabilities. The Task Force report emphasized
the importance of participating in AI research. The NAIRR Pilot is a proof-of-concept for the eventual
full-scale NAIRR. It will focus on supporting research and education efforts, including training students on
the responsible use and development of AI technologies by providing access to infrastructure and training
resources while gaining insights that will refine the design of a full NAIRR. The NAIRR pursues four key
goals:

• spurring innovation,

• increasing the breadth of talent,

• improving capacity, and

• advancing trustworthy AI.

To achieve these goals, at the request of the National Science Foundation’s Office of Advanced Cyberinfras-
tructure (OAC) and the Department of Energy’s Advanced Scientific Research Computing (ASCR) program,
we organized a NAIRR software workshop.

The workshop aimed to discuss an AI software stack, or a set of AI software stacks, which includes com-
puter programs, training and inference frameworks, libraries, user interfaces, data management, curation,
debuggers, and performance tools, and making them available to the broadest possible audience. The NAIRR
software stack should strive to span scientific research domains, scales, and users, leveraging existing software
stacks used in academia, national laboratories, and industry.

This workshop report presents the NAIRR Pilot’s immediate needs and long-term goals, considers the com-
position of the NAIRR software stack over two to five years, and aims to address the evolving needs of
the scientific community. These needs include real-time analysis of sensor/experimental data and decision-
making using AI, privacy and security requirements in AI-based scientific applications, foundation models,
mixed precision libraries, operating systems, programming environments, toolchains, storage needs for the
ever-growing volume of training data, and portability of software across emerging novel AI hardware plat-
forms.

The NAIRR Pilot’s software stack will consist of existing software designed for a wide range of users, from
beginners to experts, across multiple communities, including education, various hardware platforms, and
both current and emerging accelerators. The report also aims to address immediate user support needs and
suggests providing small supplements to current grantees during the NAIRR Pilot.

A key purpose of the workshop was to determine the feasibility and needs of the required software stack,
along with the related research and development to sustain a long-term NAIRR effort, expected to begin in
1 to 1.5 years and aimed at a 5-year horizon. The workshop also explored procedures for integrating newly
developed software into the NAIRR software stack and future funding requirements, specifically for NAIRR
software. This inquiry differed from funding fundamental research in AI or AI applications in science, for
which federal funding agencies already have funding opportunities.
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The workshop report also emphasizes the creation of ethical, transparent (explainable), and trustworthy AI.
The NAIRR’s goal of utilizing AI for science differs from that of AI for industry, requiring a customized
software stack. Moreover, the workshop included users who were not fluent in HPC or simulations, such
as experimentalists managing a deluge of data. Lastly, the report aims to be a cohesive outcome of the
workshop that ensures the seamless integration of inputs from all subgroups involved.

The NAIRR aims to spur innovation, increase breadth of talent, enhance capacity, and promote trustworthy
AI. The NAIRR software workshop aligns with this vision and laid the foundation for a robust, democratized
AI research infrastructure that empowers a broad user base and drives innovation throughout the U.S. AI
ecosystem. Furthermore, it addressed the evolving needs of the research community, such as real-time data
analysis, privacy and security in AI applications, and software portability across emerging AI hardware plat-
forms. By focusing on the feasibility and needs of a longer-term NAIRR, this workshop explored procedures
for incorporating new software developments and future funding requirements, ensuring that AI tools and
frameworks remain cutting-edge, user-friendly, and adaptable to various research environments.

Specifically, the workshop examined the various components that should comprise the NAIRR software
stack. The key elements under consideration included operating systems like Unix and Linux, which form
the backbone of many AI applications. The discussion also covered middleware solutions for communication
and resource management. Language support and compilers were another key focus, with special attention
given to widely used languages such as Python, Julia, C, C++, and Fortran, which are essential for developing
AI models and performing computational tasks. Additionally, the workshop investigated workflow managers
and AI-related libraries, including machine learning (ML) and deep learning (DL) libraries, models, and
frameworks, which are essential for developing and deploying AI applications. Finally, the NAIRR software
stack must be compatible with researchers’ existing software dependencies, including HPC libraries and tools.

The goal was to identify various software options that cater to users’ diverse needs without endorsing a
single supplier. Emphasis was placed on open-source options to ensure broad accessibility and adaptability.
Further discussions addressed immediate user support needs for the NAIRR Pilot software stack, established
priorities for the comprehensive NAIRR software stack, and identified future investment requirements. These
discussions focused on open-source development and support for emerging hardware, ensuring that the
NAIRR software stack remains cutting-edge and relevant to evolving technological advancements. The
workshop organizers conducted a pre-workshop user needs survey to better understand the software and
libraries required for AI research. Based on the pre-workshop survey, a second, refined survey was prepared
for the NAIRR Pilot meeting (February 19–21, 2025), which is reported here, as it surveyed a wider audience
with some overlap.

2 Case Studies
At the outset of the workshop, six domain-focused case studies were presented to illustrate how AI can
accelerate discovery, facilitate novel analyses, and open new avenues for scientific exploration. These studies
spanned x-ray science for real-time materials characterization, advanced biology for protein design, and the
integration of AI in science education. They also addressed AI-driven methods for cosmology, regulatory
challenges in medical imaging, and the application of machine learning architectures in weather forecasting.
These examples demonstrated both the promise of AI workflows in transforming scientific research and the
persistent gaps that must be bridged to realize that promise at scale. The following section details each case
study, examining the opportunities for innovation and the specific challenges—ranging from data collection
and foundational model development to infrastructure requirements and formal uncertainty quantification—
that emerged in these various domains.
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End-to-end x-ray science powered by HPC and AI will unlock new scientific capabilities from existing
instruments used in materials characterization. For example, at the Advanced Photon Source, a large-scale
experimental user facility, AI at the edge enables the real-time analysis of Gb/s data streams, producing
results that are often more accurate and 100 times faster. It also facilitates self-driving experiments and
instruments to maximize information gain in minimal time and learns material physics directly from mea-
surements, thereby expanding the knowledge base. Gaps: There are challenges associated with AI-aided
real-time data analysis, foundation models, and the curation of data and models. A key challenge is striking
the right balance between model accuracy, physics-based insights, and the practical constraints of real-world
hardware. This includes dealing with complex-valued data and developing computational methods that
efficiently incorporate scientific principles. As we work towards a comprehensive scientific AI assistant for
experiment planning, guidance, and operation, we face gaps such as the need for multimodal, scientific
context-aware foundation models, standard interfaces for tool usage, agentic AI capabilities, seamless ma-
chine learning operations (MLOps), as well as seamless computational and experimental provenance tracking
and meta-analysis for the evaluation and deployment of foundation models.

In biology, programmable protein design entails a framework that allows users to prescribe programmable
design constraints via a natural language interface, providing ease and flexibility. A critical challenge in
realizing such a framework is a lack of comprehensive multimodal protein design datasets that integrate
text, protein/gene sequence, and structure/conformational modalities to build aligned representations for
protein sequence-function mapping. Curating such a dataset requires LLM-assisted workflows to create
rich narratives that can resolve potential issues, such as mode collapse. Additionally, we lack workflows
effectively designed to integrate experimental observables with foundation models seamlessly. Moreover,
many of these observations are qualitative and not always quantitative, and there is a lack of sufficient
experimentally labeled datasets. Gaps: To train such multimodal foundation models, we require high-
performing software stacks that are easy to customize. For instance, existing software stacks for text-vision
models are not easily transferable to protein multimodal models. The current stacks require significant
development time to incorporate custom changes. There is also a need for libraries that have ease of
use while retaining scalability and performance. Finally, in the broader context of automated scientific
discovery, there are software gaps in automated test beds that link foundation model outputs with self-
driving laboratories. We require agentic frameworks to evaluate HPC resources and select the top-performing
candidates for self-driving laboratory experiments. The framework must be customizable to implement
agents with the sophistication to plan and execute fine-grained steps of robotic pipelines, thereby realizing
self-driving experiments and recording experimental outputs to provide feedback for the foundation models
and to scientists in an easily understandable manner.

As a data-rich science, cosmology is an excellent application domain for AI/ML methods. A convergence of
data-intensive and high-performance computing pathways will accelerate adoption. AI methods have solved
and will solve problems that could not be approached otherwise. These methods can and must be applied
in many places due to the size and complexity of the data sets. However, the status of formal uncertainty
quantification (UQ) applications in these areas remains relatively crude, primarily due to the complexity of
the problem. The presence of bias due to several problems with measurements, modeling uncertainties, and
assumptions remains a key issue, as techniques such as discrepancy modeling are not yet mature enough.
A combination of both physical and modeling input into purely data-based methods is needed, as is widely
recognized, but current approaches only represent a starting point. Large-scale models, combined with
massive computing resources, can open up new avenues for exploration. Gaps: Historically, there was a
gap between HPC and AI hardware; now, they are essentially the same, the consequences of which are still
unknown. AI applications, primarily LLMs, are driving hardware evolution away from double precision, and
modeling and simulation software tools must address the challenge of handling mixed precision. This presents
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an argument for having a somewhat unified toolchain for AI, modeling, and simulation. The diversity of the
AI for Science (AI4S) application space is daunting; it is significantly more complex than the space with
which HPC professionals are familiar. Nevertheless, the AI application ecosystem has a robust framework for
addressing this, including deep learning (DL) frameworks, machine learning (ML) libraries, natural language
processing (NLP) tools, notebooks, APIs, and other related technologies. However, the optimal strategies
for combining HPC and AI approaches, such as modular design and workflow management systems, remain
uncertain. A hybrid approach to integrating HPC and AI software stacks is probably best determined by pilot
projects rather than a top-down approach. HPC facilities will need to become more cloud-like to support the
AI toolchain, including containerization, orchestration, elastic scheduling, and support for hybrid workflows.

Weather forecasting is an excellent testbed for newly developed machine learning architectures, as the
extensive observational data necessary to make accurate predictions pushes the limits of current hardware
and software. ERA5, the fifth generation of climate reanalysis produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF), offers hourly data on various atmospheric, land-surface, and ocean-
state parameters, along with uncertainty estimates. Tasks such as predicting the three-dimensional (3D)
atmosphere for medium-range weather forecasting (up to 14-day lead time), creating emulators for climate
research, and downscaling images for local-scale impacts of weather and climate rely on datasets of hundreds
of terabytes to petabytes of data. The advent of scalable machine learning architectures (e.g., transformers),
the availability of high-quality data, and access to numerous GPUs and TPUs are driving a paradigm shift in
weather forecasting. Current software is primarily designed for traditional vision-based tasks, encompassing
everything from data loading to readily available architectures. This limitation affects academic researchers
and helps explain why most of these models are created by large technology companies. Gaps: Due to the
large image sizes (721 x 1440) and the number of channels (potentially hundreds to thousands), substantial
GPU memory is necessary for the activations alone. I/O is typically the limiting factor for training, so a
significant challenge is adapting the current generation of hardware and software to these datasets. Custom
I/O for training with node-local storage and improved caching/prefetching compared to native PyTorch
Lightning has enhanced training time by 20-30 percent (DALI and DLIO for benchmarking and profiling);
however, future generations will need petabytes of training data, and the model architecture along with
deep learning packages are not optimized for models with O(100) channels. Nontrivial model parallelism
techniques—such as gradient checkpointing, parameter sharding, and tensor parallelism—are essential for
efficiently managing memory usage and enabling the training of large models. Moreover, PyTorch requires
considerable customizations to minimize pre-processing and any nontrivial CPU-based pipelines, such as
asynchronous operations.

Within regulatory science, research across numerous program areas treats AI and machine learning as
major focal points for developing lifesaving medical devices. Tools are designed to help innovators assess the
safety and effectiveness of emerging technologies at every stage of device development. Over the past decade,
advancements in AI image processing have led to a marked increase in clearances and approvals across diverse
product areas. However, the availability of and access to medical imaging data remain a persistent challenge.
To address this, a recent collaborative initiative was launched to establish a medical imaging data exchange
platform equipped with built-in tools for creating algorithms that meet regulatory standards, ultimately
benefiting the broader imaging ecosystem. Gaps: Current generative AI research centers on formulating a
case-agnostic approach to assessing factual accuracy, employing performance assessment strategies such as
benchmarking, expert evaluation, and model-based evaluation. Key hurdles in medical AI, from a regulatory
standpoint, include the limited availability of accessible, sustainable data platforms that meet stringent
requirements, the need for advanced evaluation platforms incorporating new methodologies and performance
metrics, and the complexities involved in determining the quality of synthetic data.
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Recognizing the expanding role of AI in education across diverse disciplines, a large environmental
science course integrated AI-driven tools to enhance programming support and tackle complex analytical
problems. This integration opened new opportunities for students to explore large-scale geospatial and
observational data, apply advanced machine learning techniques to ecosystem modeling, and conduct real-
time analyses of climate variables. Although these capabilities significantly extended the scientific scope
of the course, they also surfaced multiple areas in need of attention. Gaps: The course implementation
revealed a requirement for specialized hardware and local storage to run large-scale AI applications, as
well as the limitations of the initial configuration in handling complex tasks. A persistent challenge lay
in developing an adaptable, scalable infrastructure capable of accommodating evolving AI tools. Another
gap was the absence of streamlined mechanisms for rapid deployment and testing across diverse AI models.
Furthermore, linking Jupyter-AI with the course’s tools necessitated custom configurations for an online
environment, highlighting the complexity of such setups. Ultimately, this experience underscored that truly
transformative AI in educational settings requires robust technical foundations, seamless model integrations,
and carefully preconfigured AI environments to enable broad-scale access and flexibility.

3 State of the Community

3.1 Current Software, Tools, and Gaps
A wealth of HPC and AI resources is available across training and inference, data management, models
and datasets, accessibility and usability, and security and privacy. Yet, integration across these focus
areas remains a persistent challenge. Researchers continue to seek end-to-end workflows—from initial data
ingestion and curation to final model deployment—that are robust, reproducible, and secure. This section
explores the community’s growing demand for better incentives, privacy-aware frameworks, seamless hybrid
HPC–Cloud–Edge infrastructures, and comprehensive education initiatives that lower the barrier to entry
for domain experts. Finally, we discuss the critical role of a national-scale resource like the NAIRR in
complementing, rather than duplicating, existing industry-driven and HPC solutions while prioritizing the
unique needs of science.

3.1.1 Training & Inference (Tables: 1 & 2)

Training and inference remain central pillars of AI workflows. The research community, encompassing
academia, government laboratories, and industry, predominantly relies on well-known deep learning frame-
works such as PyTorch and TensorFlow. For large-scale model training, frameworks such as DeepSpeed
and Megatron-LM enable efficient distributed training, particularly for large language models (LLMs).
In some cases, existing LLMs need to be fine-tuned for a specific scientific purpose. Meanwhile, tools like
vLLM and TensorRT-LLM optimize inference performance for production deployments.

Beyond the core frameworks, there is an increasing need for containerization (e.g., via Docker or Singu-
larity/Apptainer) and for reproducible environments, especially in the HPC ecosystem. Researchers also
see value in JAX for high-performance machine learning and differentiable programming, while Hugging
Face Spaces and model repositories facilitate experimentation and community sharing.

Despite the rich ecosystem, multiple gaps remain. Users require streamlined pipeline management and
better environment version control to avoid the pitfalls of inconsistent or brittle deployments. As large
and multimodal datasets become more prevalent, resource reservation and job scheduling complexities (e.g.,
across distributed systems) can become bottlenecks. There are also mundane challenges that need to be
addressed, such as submitting remote workloads to remote systems. Issues such as a lack of standard
interfaces and the need for multi-factor authentication hinder the automation process. Another critical gap
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emerges in bridging HPC and emerging AI stacks: how to efficiently port PyTorch or other frameworks to
new hardware, such as Cerebras, Graphcore, and AMD, while retaining reproducibility and performance.

Several participants emphasized the importance of privacy-preserving and secure infrastructure for train-
ing on proprietary or sensitive data, as well as the imperative to integrate non-deep-learning AI meth-
ods, domain-specific simulations, and trustworthy AI frameworks into mainstream training and inference
pipelines. Finally, reproducibility—particularly the ability to checkpoint, convert, and retrain models—
remains a significant challenge at scale.

Tool/Software Description/Use Case

PyTorch & TensorFlow Core deep learning frameworks for training & inference across
multiple domains.

DeepSpeed & Megatron-LM Distributed training of large-scale models (LLMs).
JAX Differentiable programming, high-performance ML, often used in

research.
Hugging Face Repos/Spaces Hosting & sharing of pre-trained models; quick demos for domain

use cases.
vLLM Optimized LLM inference with low latency.
TensorRT-LLM NVIDIA’s high-performance inference engine for LLMs.
Containers (Docker, Singularity) Portable, reproducible environments for AI workflows.
Scikit-Learn Classic machine learning, widely used for simpler training &

inference tasks.
QisKit, PennyLane, TorchQuantum Quantum/ML frameworks (used in specialized research).
Llama, llama.cpp, ollama Foundation model & inference frameworks for LLM

experimentation.
Lightning AI Wrappers for PyTorch/TF enabling easier training & scaling.

Table 1: Commonly used tools and software for training and inference.

Gap Description/Need

Pipeline Management &
Monitoring

End-to-end training/inference pipelines are complex; need
integrated workflow & provenance tools.

Resource Reservation & Usage Allocating and scaling HPC/cloud resources as well as workload
submission and monitoring remain challenging for workflow
systems and end-users.

Software Version & Environment
Control

Tools like Spack/E4S exist, but consistent environment
management is still burdensome.

Conversion of Training Checkpoints Converting checkpoints for cross-framework inference or edge
deployment is error-prone.

AI on Private/Proprietary Data Confidentiality concerns require robust privacy-preserving
training & inference methods.

Performance Portability & Scaling Users want their code to seamlessly run on GPUs, specialized
HW (Cerebras, Graphcore), HPC clusters, etc.

Incentives & Reproducibility Lack of tools and clear incentives to share reproducible pipelines;
reproducibility remains a cultural & technical gap.

Table 2: Top gaps in training and inference workflows.
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3.1.2 Data Management & Storage (Tables: 3 & 4)

Effective data management and storage solutions underpin the success of AI projects, yet much of the existing
storage stack (e.g., parallel filesystems such as Lustre, DAOS, Spectrum Scale) was initially engineered
for HPC workloads with large sequential I/O. AI training often involves many small random reads, dynamic
data augmentation, and the need to quickly load large batches of unstructured data (e.g., images, text,
videos).

Consequently, frameworks like Globus for data transfer and MinIO for object-based storage are increasingly
important, complemented by standard scientific formats such as HDF5. Multiple workshop participants
emphasized the importance of FAIR principles for data (Findable, Accessible, Interoperable, Reusable)
as well as FAIR4ML considerations. Tools that integrate metadata (including domain ontologies) are
necessary to handle the diversity and complexity of emerging AI datasets.

Key gaps include the lack of user-friendly data lifecycle management (especially for large, ever-growing
datasets), the difficulty of integrating domain-specific metadata and provenance, and bridging HPC systems’
node-local storage with shared parallel filesystems in a way that is easy for non-expert users. The commu-
nity is also requesting a “data commons” approach, which enables the sharing of curated, domain-relevant
datasets, provided that privacy and licensing constraints are respected.

Tool/Software Description/Use Case

HDF5 & NetCDF Common scientific data formats for array-based data.
Globus Data access, sharing, & transfers across different sites.
MinIO Distributed object storage is frequently used for AI data.
Parallel Filesystems (Lustre,
DAOS, Spectrum Scale)

HPC-grade storage often used for large-scale training.

Data Version Control (DVC) Versioning of data & experiment tracking.
Metadata & Ontologies
(HPC-FAIR)

Tools/ontologies for describing data, e.g., HPC-FAIR,
domain-specific ontologies.

Tools for AI Model Management Tools such as MLFlow that allow model and experiment tracking

Table 3: Common tools for data management and storage in AI.

Gap Description/Need

AI-ready Metadata Layer Tools to systematically capture domain-specific metadata,
provenance, and semantics.

Unified Ontologies & Standards Lack of consistent data schemas across scientific domains hinders
reusability.

Multi-tiered Storage Integration Need seamless bridging of node-local and shared filesystems
(burst buffers, HPC, cloud).

Lifecycle & Provenance
Management

End-to-end policies for data creation, curation, archival, and
potential unlearning/removal.

Data Privacy & Confidentiality Mechanisms for secure storage & controlled access, especially in
regulated domains.

Scalability of Data Movement Transferring multi-terabyte datasets from distributed locations is
expensive & time-consuming.

Data Discovery Services Capabilities to discover datasets relevant to a particular scientific
discovery.

Table 4: Top gaps in data management and storage.
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3.1.3 Current Models, Datasets, and Gaps (Tables: 5 & 6)

The ecosystem of AI models and datasets is increasingly diverse. Public model repositories (e.g., Hugging
Face and OpenMined, as well as domain-specific repositories) have enabled the proliferation of pre-trained
models, particularly large language models (LLMs) and foundational vision models. Domain researchers in
agriculture, climate science, health/medicine, and materials science have begun adopting these models, often
requiring specialized datasets such as PlantVillage, Phenobench, or curated medical datasets subject to
Health Insurance Portability and Accountability Act (HIPAA) compliance.

Crucial gaps include the need for better data curation (e.g., removing or correcting “bad” data), robust
annotation tools, and the ability to update or untrain models without retraining from scratch. Synthetic
data generation is gaining traction as a means to address proprietary or sparse datasets, but best practices for
verifying data authenticity and fidelity are still in development. Researchers desire more explicit FAIR4ML
schemas to describe models and data, enabling more consistent and transparent sharing across different
platforms.

Model/Dataset/Software Description/Use Case

Hugging Face Repositories Hosting & serving pre-trained models (transformers, LLMs, etc.).
PlantVillage, Weed Detection,
CropAndWeed, Fruits-360

Public agriculture datasets used for plant disease/weed detection
tasks.

Corn/Soybean Disease, Growth
Stages (private)

Proprietary agriculture datasets used in industry or specialized
research.

All of Us (NIH) Confidential medical dataset, subject to stringent privacy & IRB
rules.

Kaggle, Data.gov, NASA/CDF Wide variety of open datasets for AI & data science competitions.
Domain-Specific Repositories E.g., Phenobench in crop research, Flatiron multimodal

cosmology data.

Table 5: Common models and datasets in use across various domains.

Gap Description/Need

FAIR Model Schemas (FAIR4ML) Standardized ways to describe, discover, and reuse models & their
training data.

Model Unlearning & Continual
Training

Efficient removal of problematic data or incremental updates
without full retraining.

Synthetic Data Generation Tools for generating domain-specific synthetic data while
preserving statistical fidelity.

Benchmarking & Rigorous
Evaluation

Need standardized metrics for comparing models across tasks and
domains.

Data Mobility & Federated
Learning

“Moving compute to the data” to address connectivity or privacy
constraints.

Multi-modal Integration Merging images, text, sensor data, and simulation outputs into
cohesive models.

Table 6: Top gaps in models and datasets for AI.

3.1.4 Current Accessibility & Usability and Gaps (Tables: 7 & 8)

A recurring theme is that accessibility in AI is about more than raw computing power. Researchers and prac-
titioners seek frictionless environments—commonly, Jupyter Notebooks and web-based platforms—that
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minimize overhead for domain scientists who may not be HPC experts. Tools such as Open OnDemand,
Globus Compute, or discipline-specific Science Gateways have made strides. Yet, the complexity of
large-scale AI remains a barrier to new entrants.

Workshop participants also cited the importance of facilitators (akin to Campus Champions, XSEDE’s
ECSS or “AI research facilitators”) who provide hands-on support. Standardizing data collection and an-
notation practices would help ensure that domain experts can more easily contribute as well as consume
AI resources. The “digital divide” extends to AI in many domains, with limited connectivity in rural or
resource-poor regions, making data ingestion and model inference difficult.

Tool/Software Description/Use Case

JupyterHub, Jupyter Notebooks Interactive computing environment for prototyping, teaching, &
collaboration.

Open OnDemand, Globus Compute Simplified web portals for HPC/AI resource access & job
management.

Science Gateways Domain-focused portals (GUI-based) for specialized AI/ML tasks.
TAPIS, DIAMOND, TACC
interfaces

HPC/AI abstraction layers and workflow engines.

Table 7: Common accessibility and usability tools for AI.

Gap Description/Need

Ease of Environment Setup Containerization & environment mismatch hamper broad
adoption; simpler solutions needed.

Onboarding & Education Many new AI users lack HPC experience; guided learning paths
or “AI facilitators” would help.

Data Movement & Management Users struggle with multi-step workflows to ingest large data for
training or analysis.

Computational Resource
Heterogeneity

Each cluster has different scheduling, container, or library
constraints.

Low-code/No-code Interfaces Domain experts want GUIs or chat-like interfaces for model
exploration without heavy coding.

Community Practices Users want to be able to follow community practices for data and
computation management.

Digital Divide & Connectivity Rural or under-resourced communities have limited network
bandwidth for data transfer.

Table 8: Top gaps in accessibility and usability for AI workflows.

3.1.5 Security & Privacy (Tables: 9 & 10)

Security and privacy considerations become increasingly important as AI permeates sensitive domains, in-
cluding healthcare, finance, agriculture, and those involving proprietary genetic data. A variety of Privacy
Enhancing Technologies (PETs) exist, including Homomorphic Encryption, Differential Privacy,
Secure Multi-Party Computation, and Federated Learning; however, many remain complex to im-
plement at scale.

Workshop participants also pointed to the growing need for adversarial robustness and red-teaming tools
(e.g., IBM’s Adversarial Robustness Toolbox and Microsoft’s Counterfit). However, practical best practices
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around model security (model theft, data leakage, etc.) are still lacking. End-to-end security, from data in-
gestion to model deployment, rarely has a single blueprint, especially in interdisciplinary, multi-institutional
collaborations. Education, reproducibility, and the notion of trustworthy AI are further cross-cutting chal-
lenges.

Tool/Software Description/Use Case

Privacy Enhancing Crypto (PECs) Homomorphic encryption (HE/FHE/PHE), ZKPs, secure MPC,
differential privacy.

Adversarial AI Evaluation (ART,
Counterfit)

Toolkits to test AI models against adversarial attacks.

Trusted Execution Environments
(TEEs)

Hardware-based enclaves (Intel SGX, AMD SEV) for secure
computation.

Federated Learning Frameworks Often built atop PyTorch or TensorFlow to train models without
centralizing data.

Confidential Computing (NVIDIA,
Intel TDX)

Industry solutions to protect data and models in hardware-based
secure enclaves.

Table 9: Common security and privacy tools for AI.

Gap Description/Need

Practical PET Integration Many privacy-enhancing cryptographic methods remain difficult
to deploy & scale.

Standardized Security/Privacy
Blueprints

Researchers lack reference architectures for end-to-end secure AI.

Data Governance & Ownership Clear policies for who owns the data/models, especially in
multi-institution consortia.

Adversarial Robustness Testing Tools exist but remain underused; best practices for systematic
red-teaming are lacking.

Federated Identity & Access
Management

Need robust solutions for cross-institution authentication (e.g.,
InCommon, NIH login).

Regulatory & Ethical Gaps AI regulations, fairness, bias, and explainability remain
unaddressed in many domains.

Model Unlearning & Data Removal Mechanisms to remove or anonymize data points after model
training are still in their infancy.

Table 10: Top gaps in security and privacy for AI.

3.1.6 Summary

Across all five focus areas—training/inference, data management, models/datasets, accessibility/usability,
and security/privacy—the community has developed a substantial collection of tools. However, integration
remains a recurring challenge: researchers consistently request end-to-end workflows, from data ingestion and
curation to final model deployment, that remain robust, reproducible, and secure. Integration is also essential
for smoothly incorporating the NAIRR stack into researchers’ existing software ecosystems, increasing the
likelihood that the NAIRR software will be widely adopted and used.

There is a growing demand for:

• Better incentives and tools to share, document, and maintain reproducible solutions.

11



• Robust frameworks for privacy-aware and secure AI, including unlearning and continuous model
updates.

• Hybrid HPC–Cloud–Edge workflows with underlying robust workflow management sys-
tems that meet domain-specific needs (e.g., agriculture, medical imaging).

• Comprehensive education & facilitation that lowers barriers to entry for domain experts.

Finally, participants frequently highlighted that the NAIRR (or any national-scale resource) should capital-
ize on existing industry-driven software and HPC solutions while focusing on the unique needs of science,
such as long-term data curation, specialized domain workflows, or novel compute architectures for emerging
AI paradigms.

3.2 Workshop Survey
A pre-workshop survey was distributed to gain informal insight into participants’ perspectives on the software
workshop, identify key areas of interest, and guide meaningful discussions. Rather than being a formal survey,
its primary purpose was to gauge the community’s current state and help shape both this workshop and
future follow-on workshops. Feedback from the survey also informed the design of break-out sessions. The
survey broadly covered topics such as the AI software ecosystem, applications, deployment strategies, data
challenges, infrastructure, and associated hurdles. It included a mix of multiple-choice, Likert scale, and
open-ended questions to collect quantitative and qualitative insights. Graphs and a detailed summary of
these initial survey results are provided in Appendix C. Building on insights from this preliminary feedback,
a refined version of the survey was distributed at the NAIRR Pilot’s Annual Meeting in February 2025,
receiving three times as many responses. Those expanded results are presented below. The refined survey
focused on gathering information about attendees’ research domains involving AI, specific AI applications
used, challenges encountered, expertise levels, computational resource usage, and motivations driving their AI
research. Analysis of these responses highlights several key insights that characterize the current landscape
of AI research within the NAIRR community.

The NAIRR Pilot’s Annual Meeting responses demonstrated a broad use base, with computer science rep-
resenting the dominant discipline (Figure 1). Engineering was the second most represented field, followed
by biological and physical sciences. This distribution highlights the interdisciplinary nature of AI research,
though with a strong technical foundation.

In terms of expertise levels (Figure 2), the majority of respondents identified as experts in AI, with a
significant number also reporting advanced competency. This suggests that the respondents were experienced
AI practitioners. However, some were also intermediate, beginner, or basic-level users, so an accurate
mapping of potential NAIRR users is not captured in this context.

Attendees reported various motivations for their AI research activities (Figure 3), with research advancement
being the primary driver. Innovation ranked second, followed by operational efficiency and cost reduction.
Notably, healthcare improvement and commercialization received minimal attention, suggesting that the
NAIRR community is more focused on fundamental research than on commercial applications.

Model development is the predominant AI application among attendees (Figure 4), followed by model opti-
mization and inference tasks. Data curation and evaluation metrics also received substantial attention, while
generative AI, education, data analysis, and model analysis were less frequently reported. This distribution
indicates a research community primarily focused on foundational AI development rather than applied use
cases.

PyTorch emerged as the dominant framework for AI development (Figure 5), used by nearly twice as many
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Figure 1: Research domains in which attendees were using AI

Figure 2: Self-reported AI expertise levels of attendees

respondents as the second-most popular framework, Hugging Face. Scikit-learn, TensorFlow, and various
APIs also had substantial adoption, while specialized tools had more limited usage.

Regarding hardware infrastructure (Figure 6), GPUs were the most widely utilized computing resource,
followed by CPUs. AI accelerators, edge devices, and other specialized hardware were used by a relatively
small number of respondents, highlighting the continued dominance of traditional GPU computing in AI
research and likely increasing the need for training around AI accelerators.

Most respondents reported working with datasets in the range of 1 GB to 1 TB (Figure 7), with the 1 GB to
100s of GB category being the most common. Fewer researchers worked with datasets of either very small
size (less than 1 GB) or very large size (greater than 100 TB). This distribution suggests that while big data
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Figure 3: Primary motivations for AI research among attendees

Figure 4: AI applications pursued by attendees

is vital in AI research, truly massive datasets remain relatively uncommon.

The vast majority of attendees reported currently using AI in their research (Figure 8), with only small
fractions either planning to use AI or not using it at all. This high adoption rate is expected given the nature
of the NAIRR Pilot program and confirms that the community consists primarily of active AI practitioners.

Attendees reported various challenges in implementing AI solutions (Figure 9), with access to infrastructure
being the most significant barrier to implementation. Documentation issues ranked second, followed by
difficulties in scaling models and optimizing performance. Other notable concerns included software setup,
data management, security and privacy, and the interpretation of results. These findings underscore the
ongoing need to enhance AI infrastructure and documentation to further advance research capabilities.
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Figure 5: Software frameworks and tools used by attendees

Figure 6: Hardware resources used for AI research

The survey results paint a picture of the NAIRR Pilot community as predominantly comprising expert
and advanced AI practitioners from computer science and engineering fields, primarily motivated by re-
search advancements and innovation. Their work focuses on model development and optimization, mainly
using PyTorch on GPU infrastructure with medium-sized datasets. Infrastructure access remains the most
significant challenge, followed by documentation issues and technical scaling challenges.

These insights can inform the future development of the NAIRR program to better support the AI re-
search community’s needs, particularly in addressing infrastructure barriers and improving documentation
resources. Additionally, the relatively limited representation of fields outside computer science and engineer-
ing suggests an opportunity to broaden participation across a broader range of research domains.
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Figure 7: Size distribution of datasets used by attendees

Figure 8: Current status of AI usage among attendees

4 Critical Themes for Advancing an AI Ecosystem
As AI continues to reshape scientific discovery and education, designing a robust and inclusive AI ecosystem
becomes ever more pressing. This ecosystem must reconcile state-of-the-art capabilities for large-scale re-
search with user-friendly tools that empower specialists in diverse fields, ranging from computational physics
to the social sciences. While cutting-edge methods are necessary to drive innovation, a practical focus on
accessibility, standardized workflows, and community-driven development is equally important. The follow-
ing subsections examine five interrelated areas that collectively form the foundation of a next-generation AI
software stack. They highlight common pain points, emerging solutions, and actionable steps for fostering
greater collaboration and efficiency.
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Figure 9: Challenges faced by attendees in implementing AI solutions

4.1 Adoption Barriers
The widespread adoption of next-generation AI software faces a broad range of barriers stemming from rapid
technological evolution, heterogeneous computing environments, and the contrasting requirements of training
and inference. Developers note that while simple tasks can be easily accomplished with existing frameworks,
more advanced needs often prove to be prohibitively complex. Model portability remains a significant
challenge, as diverse file formats, checkpoint structures, and hardware-optimized libraries make it difficult
to transfer models across platforms, particularly when transitioning from central computing clusters to edge
devices. This lack of standardization extends to performance monitoring and debugging, where current tools
and methodologies often fail to provide consistent or insightful feedback across varied systems. Additionally,
AI stacks emphasize training workflows over inference, resulting in limited support for production-level model
deployment and real-time predictions. Another obstacle is the disparity between the approaches favored by
commercial cloud providers and the specialized requirements of HPC environments, forcing research teams
to manage multiple software versions and bespoke integration layers.

Potential Directions and Approaches: Strategies for overcoming these barriers emphasize balancing
industry-standard frameworks with science-specific optimizations. A robust software ecosystem may in-
clude recipe-based package management, enhanced performance profiling tools, and standardized checkpoint
formats to simplify model transfer and reuse. Providing managed “co-lab” environments—where models,
data, and computing resources are integrated—could reduce the overhead of manually configuring complex
AI workflows. In parallel, cross-platform abstractions and hardware-agnostic libraries would help mitigate
edge-to-cloud heterogeneity, ensuring that both training and inference can be seamlessly scaled. Finally,
community-led best practices, reference implementations, and potentially even AI-driven chat interfaces for
software configuration and debugging could accelerate productivity. By focusing on well-defined interoper-
ability standards and collaborative open-source culture, the research community can promote broader and
more efficient adoption of AI technologies across the full spectrum of scientific applications.
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4.2 Deployment Challenges
Developing and deploying next-generation AI software stacks for scientific research involves complex chal-
lenges arising from the need to integrate diverse hardware platforms, accommodate varied user skill levels,
and meet evolving research demands. A core issue is the variability in computing environments—ranging
from commercial cloud platforms to on-premises HPC clusters—each with its own containerization, orches-
tration, and resource allocation requirements. Successfully orchestrating AI services and infrastructure across
these heterogeneous environments necessitates robust workflow frameworks and standards for interoperabil-
ity. Moreover, while AI training has received significant attention, many researchers now emphasize that
efficient inference resources are equally critical. Balancing the requirements of training and inference is
complicated by differences in resource availability, deployment costs, and organizational policies.

Another significant challenge is establishing a cohesive software ecosystem that evolves in tandem with the
rapidly advancing AI methods. Researchers typically rely on multiple deep learning frameworks, specialized
libraries, and domain-specific tools. Ensuring these components remain compatible and secure demands a
systematic approach to versioning, vulnerability management, and extensibility. In practice, the “big tent”
vision—offering standard AI services across multiple providers—runs up against vendor-specific optimizations
and proprietary tools. As a result, selecting a baseline or “minimum viable” technology stack to unify
deployments becomes a pressing concern, particularly if hardware and AI frameworks are expected to change
over time.

Such difficulties underscore the importance of workflow-centric solutions and flexible resource management
strategies that allow users to compose multi-step AI pipelines. Robust support for data federation and
secure enclaves is also essential, enabling researchers to move large volumes of data without compromis-
ing performance or privacy. Although container-based approaches (e.g., Kubernetes) and HPC schedulers
(e.g., SLURM) offer partial solutions, aligning them within a single operational model requires advanced
scheduling, orchestration, and packaging techniques that are not yet standardized.

Potential Directions and Approaches: Numerous community-driven efforts aim to address these deploy-
ment hurdles. Container-based packaging solutions, coupled with automated build pipelines, can streamline
software releases and reduce overhead for researchers. Tools that bundle model repositories, data services,
and remote computation frameworks (for instance, systems leveraging model-as-a-service approaches) have
shown promise in simplifying model deployment. Additionally, flexible data management and access solu-
tions, combined with HPC-like scheduling for AI tasks, help unify the user experience across traditional
supercomputing and cloud-based environments. Projects that leverage open-source libraries and container
repositories (e.g., the Extreme-scale Scientific Software Stack (E4S)) can serve as a baseline for institutions
to build domain-specific enhancements.

Ultimately, establishing a seamless environment for AI deployment will require striking a balance between
standardization and the need for ongoing innovation. Clear documentation, robust APIs, and user-centered
design principles—alongside support for new model architectures, platform abstractions, and scalable re-
source management—can help close critical gaps. These efforts must be guided by researchers’ practical
experiences, ensuring that the resulting AI ecosystem remains adaptable, interoperable, and responsive to
current and future scientific demands.

4.3 Design Challenges
A central challenge in creating an open AI software stack for the NAIRR is addressing the diverse needs of
researchers and educators across multiple disciplines. On one hand, experts require advanced capabilities
for large-scale data processing and model training, including support for distributed computing, specialized
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accelerators, and robust performance monitoring. On the other hand, non-expert users in fields such as
the social sciences or humanities often need lower technical barriers, minimal setup overhead, and intuitive
interfaces that facilitate a quick transition into AI-driven workflows. Balancing these requirements demands
careful consideration of mature technologies (e.g., containerization, established deep-learning frameworks)
and emerging methods (e.g., federated learning, privacy-preserving training) that make AI more accessible
and transparent.

Equally important is the need for reliable data management and provenance, particularly given the increasing
complexity of modern AI systems. Researchers must be able to discover, share, and reuse datasets without
violating privacy or ownership constraints. Integrating FAIR principles (Findable, Accessible, Interoperable,
and Reusable) is essential for sustaining open, collaborative work. At the same time, specialized concerns,
such as explainability, safety checks, and auditing, remain inconsistently supported by current software
tools. Combining reproducibility and ethical oversight with fast-paced innovation presents a significant
design challenge, underscoring the need for modular and adaptable architectures.

Potential Directions and Approaches: A promising avenue for the NAIRR is to build upon robust
open-source platforms, integrating them into a cohesive environment tailored for research and education.
Collaboration with projects like Tapis, KNIME, and OpenMined can help streamline workflow management,
visual programming, and secure data handling. Meanwhile, industry-standard frameworks like PyTorch and
Hugging Face provide robust, well-documented foundations for model development, training, and deploy-
ment. Bringing these elements together in a “NAIRR Collab”-style platform with preconfigured containers,
curated datasets, and user-friendly tooling could significantly reduce the overhead for classroom adoption
and early-stage research.

Another beneficial strategy involves designing standardized pipelines for everyday tasks, such as canonical
workflows for text classification, image analysis, or multimodal modeling. By abstracting away repetitive
setup steps, these pipelines can improve reproducibility, lower entry barriers, and enable domain experts to
focus on generating insights rather than wrangling code. Metrics for success may include the breadth of user
adoption across various fields, the volume of reproducible publications generated from the system, and the
degree to which educational programs incorporate NAIRR-supported resources. Ultimately, an adaptable,
transparent, well-documented AI software stack complements industry-led innovations and fulfills the NAIRR
mandate to democratize AI for the broader scientific and educational community.

4.4 Outreach
A common barrier to realizing the full potential of AI research resources is a general lack of awareness and
guidance within the broader research community. Many prospective users, particularly those outside the
AI and HPC domains, remain unaware of the available opportunities or how to navigate the application
processes. Even those with preliminary knowledge often struggle with inconsistent documentation, varying
facility policies, and the shortage of straightforward, unified “getting started” materials. Educational insti-
tutions and research groups note that while short courses and training sessions exist, they are not always
effectively publicized or tailored to the needs of newcomers. New users may feel overwhelmed by unfamiliar
terminology and competing resource portals in this environment, leading to underutilized allocations and
missed research opportunities. Further complicating matters, tight deadlines for proposals and fixed-term
allocation periods can deter or disadvantage investigators who require additional time to fully engage with
advanced AI infrastructure.

Potential Directions and Approaches: Effective outreach strategies combine structured training oppor-
tunities, ongoing community engagement, and transparent, consistent communication. In-person workshops,
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virtual tutorials, and open-house-style events can help demystify resource usage and reduce the perceived bar-
riers for those new to large-scale computing. Partnering with established conferences, open-source communi-
ties, and educational nonprofits provides a direct channel to broader and more diverse audiences, particularly
those whose needs differ from those of seasoned HPC and AI specialists. Reference projects and working
examples that showcase real-world benefits can guide users through replicable demonstrations, providing a
clear path to success. At the same time, a well-organized support network—featuring both online forums
and dedicated staff—can provide timely assistance. Clear incentives, such as certificates, scholarships, or
recognition for completing training modules, bolster participation and highlight the personal and career ben-
efits. Finally, building user-friendly websites and central resource directories, with intuitive getting-started
guides and active community channels, ensures that researchers discover the right tools and readily apply
them.

4.5 Software Carpentry
Software Carpentry and its sister initiatives in Data Carpentry and Library Carpentry provide foundational
coding and data science skills that help researchers use computational methods more effectively worldwide.
As AI methods gain prominence in fields ranging from biology to cosmology, there is a growing need to adapt
traditional Software Carpentry pedagogies to include AI-focused content and best practices for large-scale
and heterogeneous environments. This involves introducing domain scientists and newcomers to concepts
such as scripting, version control, reproducible research workflows, and more advanced tools for distributed
AI training and inference. Although many researchers are proficient in basic programming, translating these
skills to AI-specific tasks—particularly in HPC or large-scale cloud settings—can be daunting without a
structured, community-driven curriculum.

Despite broad enthusiasm for leveraging AI in scientific research, multiple challenges persist in integrating
Software Carpentry approaches with AI pipelines. Before tackling more advanced AI libraries or specialized
frameworks, Beginners require foundational knowledge of the command line, version control, and Python or
R. Moreover, domain scientists seeking to incorporate AI into modeling and simulation workflows frequently
confront a steep learning curve when debugging complex training jobs, understanding resource allocation,
or setting up containerized environments. Meanwhile, advanced users may struggle to make their software
compatible with NAIRR’s evolving ecosystem or follow consistent standards for documentation, testing, and
reproducibility. These gaps point to the need for well-defined community policies covering everything from
security practices to interoperability requirements and innovative ways of “badging” or certifying software
that aligns with NAIRR’s principles.

Potential Directions and Approaches: Building on the community spirit and open-access model that
characterize The Carpentries, a tailored AI-focused curriculum could provide structured tutorials and re-
sources, guiding learners from basic coding skills to advanced HPC-based AI workflows. Such content
would include example-driven lessons covering AI model lifecycle management, containerization, and col-
laborative tools for versioning and sharing. Hands-on workshops—co-hosted by NAIRR resource providers,
HPC centers, and software development experts—would impart these skills and showcase reference projects
and success stories demonstrating how AI can accelerate and enrich scientific discovery. In parallel, a shared
repository of best practices and modular training assets (e.g., scripts, containers, notebooks) can help domain
scientists adapt lessons to their specific fields. By encouraging community contributions and maintaining
an open, iterative development process, Software Carpentry for AI can evolve alongside rapidly changing
technologies while focusing on core competencies and reproducible methodologies.

Metrics and Community Engagement Meaningful progress can be tracked through multiple lenses: the
number and breadth of workshop participants, the extent to which researchers reuse and extend provided
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training materials, and the frequency with which lessons and toolkits are cited or adapted in scientific
publications. Success might also be measured by creating new badged software packages that follow NAIRR-
compliant guidelines or by the growth of an online forum where users can discuss challenges and share
solutions. Ultimately, a collaborative approach—rooted in open-source ethos and grounded in real-world
research needs—will empower scientists at all skill levels to harness the transformative potential of AI tools
consistently and sustainably.

4.6 Summary
These five focus areas highlight the breadth and depth of considerations necessary to develop a robust,
inclusive AI software stack. Addressing Adoption Barriers calls for simplified workflows and standardized
checkpoints; managing Deployment Challenges requires flexible, interoperable infrastructure; resolving De-
sign Challenges depends on striking a balance between cutting-edge capabilities and broad accessibility;
prioritizing Outreach ensures that new users can discover and leverage available resources; and embracing
Software Carpentry principles empowers scientists at every skill level to adopt and adapt AI methods con-
fidently. These subsections underscore the importance of harmonizing technical innovation, training, and
community engagement to realize AI’s transformative potential across the scientific landscape.

5 Insights and Emerging Ideas from Workshop
The workshop concluded by bringing together leading experts in AI, HPC, and data science to explore
software-related strategies and governance considerations for the NAIRR Pilot’s AI software stack. The
panel included specialists with backgrounds in security and governance, data lifecycle and accessibility,
AI-driven interfaces, and HPC-AI integration. Their collective goal was to determine best practices, key
priorities, and actionable steps for advancing the NAIRR’s software ecosystem.

A central theme of the session was the importance of user-centric design. Panelists emphasized that
the NAIRR’s software stack must lower barriers to AI adoption for diverse communities, particularly those
without extensive technical backgrounds. Several participants proposed the rapid development of a NAIRR-
GPT—a chatbot interface leveraging LLM technology to guide new users. This capability should be
lightweight and agile to quickly adapt to the rapid progress made by industry in foundational models. This
interface would enable researchers to articulate scientific problems in plain language and receive tailored
recommendations for relevant models, data sources, and computing resources.

However, panelists cautioned against a ”one-size-fits-all” approach. Given AI’s rapid evolution, the NAIRR
must remain flexible and agile, allowing domain experts to integrate emerging tools without overhauling the
entire infrastructure. Participants agreed that the NAIRR should initially focus on a smaller, well-defined
scope—such as educational pilots and foundational user support—before scaling to more complex features
or broader user bases.

Governance and security emerged as paramount considerations. One panelist emphasized the importance
of defining clear roles, responsibilities, and oversight mechanisms, particularly in relation to software devel-
opment pipelines, hardware and software supply chains, and data usage agreements. From the beginning, the
NAIRR must incorporate robust security measures to protect software integrity, user data, and the research
process.

The panel also explored the intersection of HPC and AI, noting that traditional HPC workloads differ
significantly from AI inference and training tasks. Experts underscored that software systems must accommo-
date both domains, potentially requiring new instrumentation, monitoring, and resource management layers.
Attendees further discussed community-driven innovation, pointing to hackathons, targeted workshops,
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and pilot programs as effective ways to foster collaboration among HPC experts, AI researchers, and domain
scientists.

Throughout the discussion, the panelists emphasized the value of leveraging existing software tools
rather than reinventing them. One contributor recommended identifying tried-and-true solutions in data
management, model training, and collaborative analytics, and refining these tools to meet the NAIRR’s
unique needs. In the process, the NAIRR could fill gaps by supporting new features or ensuring compatibility
across a broad spectrum of user requirements.

The panel converged on several core recommendations. First, prioritize user accessibility and rapid
onboarding through initiatives like NAIRR-GPT. Second, structure governance and security from
the ground up, clarifying vendor responsibilities and ensuring robust software pipelines. Third, focus on
a manageable initial scope, then scale the available resources as AI capabilities and community needs
evolve. Finally, promote continuous community engagement—through hackathons, surveys, and cross-
domain collaborations—to keep pace with the fast-changing AI ecosystem. These guiding principles will be
the foundation for an inclusive, sustainable, and forward-looking NAIRR software environment.

6 Conclusions and Recommendations
Some of the main conclusions and recommendations of the workshop (in no particular order) are as follows:

1. The NAIRR Pilot’s software stack will leverage existing and emerging software solutions, catering to a
range of users (from novices to experts) across diverse hardware platforms and accelerators, including
those used for education. Notably, the HPC community views these solutions as a layered software
stack optimized for performance and scalability. In contrast, the AI community often refers to a
broader software ecosystem that tightly integrates data, user support, and training frameworks.
The NAIRR effort must bridge these perspectives to effectively serve all stakeholders.

2. The stack must respond to the evolving needs of the scientific and AI communities, including real-time
data analysis, privacy and security challenges, and portability across emerging AI hardware. Effective
data management, encompassing cleaning, curation, and annotation, ensures that researchers can
fully leverage the growing volume of diverse datasets.

3. The following software components for the NAIRR stack must remain flexible and extensible to
accommodate future technology advances:

• Operating systems,
• Middleware solutions for communication and resource management,
• Languages and compiler support (with emphasis on Python, Julia, C, C++, and Fortran),
• Workflow managers, and
• AI-related libraries/models/frameworks, including HPC software that can be leveraged and/or

enhanced through AI.
4. Embracing open-source development and ensuring support for new hardware will be essential for

keeping the NAIRR stack at the forefront of technological advances.
5. The stack should offer easy-to-use interfaces (e.g., Jupyter Notebooks, web-based platforms) to lower

the barrier for newcomers to AI. The stack should also include services that leverage AI technologies
and can improve user experience along the computational/experimental lifecycle, including compu-
tation/experiment setup, monitoring, debugging, provenance tracking, and result analysis and inter-
pretation. At the same time, training and continuous user support cannot be separated from the
software itself, underscoring the need for educational resources and dedicated guidance to help new
users navigate this technology.
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6. The stack must address near-term user-support needs; for instance, funding small supplements for
current grantees during the NAIRR Pilot was proposed. Attendees also recommended creating in-
tuitive chatbot interfaces to help users interact with the software stack, further reducing barriers to
adoption and ensuring efficient troubleshooting and assistance.
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B Workshop Agenda

Day 1: December 3, 2024

• 08:00 - 09:00 Breakfast and Check-in (TCS Conference Center)

• 09:00 - 09:30 Workshop Overview and Objectives (Room 1416, TCS Conference Center)
– 09:00 - 09:05 Introductions (DK Panda and Michael Papka)
– 09:05 - 09:10 NAIRR Software Workshop Goals and Outcomes (Sheikh Ghafoor)
– 09:10 - 09:30 NAIRR Overview (Katie Antypas)

• 09:30 - 10:30 Domain AI Talks: AI in Practice, AI What is Missing (Room 1416)
– 09:30 - 09:40 Climate (Troy Arcomano)
– 09:42 - 09:52 Medical (Aldo Badano)
– 09:54 - 10:04 Instruments/Experiments (Mathew Cherukara)
– 10:06 - 10:16 Biology (Gautham Dharuman)
– 10:18 - 10:28 Environment (Carl Boettiger)

• 10:30 - 10:50 Surveys (Room 1416)
– 10:30 - 10:40 NERSC Survey Results (Wahid Bhimji)
– 10:40 - 10:50 NAIRR Software Survey Results (Murali Emani)

• 10:50 - 11:15 Break

• 11:15 - 12:30 Breakout Session 1: Software Needs for NAIRR Pilot (Rooms 1416, 1404, 1405, 1406,
1407)

– Current Software, Tools, and Gaps - Training and Inference
– Current Software, Tools and Gaps - Data Management and Storage
– Current Models, Datasets and Gaps
– Current Accessibility & Usability and Gaps
– Current Software, Tools, and Gaps - Security & Privacy

• 12:30 - 13:00 Summary of Breakout 1 (Room 1416)

• 13:00 - 14:00 Lunch (Networking)

• 14:00 - 15:00 Cosmology Meets AI: Roadmapping the Final Frontier (Speaker: Salman Habib, Room
1416)

• 15:00 - 16:00 Parallel Breakout Session 2: Key Software Features (Rooms 1416, 1404, 1405, 1406,
1407)

• 16:00 - 16:15 Break

• 16:15 - 16:45 Summary of Breakout 2 (Room 1416)

• 16:45 - 17:00 Day 1 Recap and Discussion (Room 1416)

• 17:00 - 18:00 Return Shuttles to Crowne Plaza
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Day 2: December 4, 2024
• 08:00 - 09:00 Breakfast and Networking (TCS Conference Center)

• 09:00 - 09:15 Welcome Back and Recap of Day 1 (Room 1416)

• 09:15 - 10:45 Parallel Breakout Session 3: Software Adoption & Deployment Challenges (Rooms
1416, 1404, 1405, 1406, 1407)

• 10:45 - 11:15 Break

• 11:15 - 11:45 Summary of Breakout 3 (Room 1416)

• 11:45 - 12:45 Parallel Breakout Session 4: Addressing Short- and Long-Term Objectives (Rooms
1416, 1404, 1405, 1406, 1407)

• 12:45 - 13:15 Summary of Breakout 4 (Room 1416)

• 13:15 - 14:15 Lunch (Networking)

• 14:15 - 15:30 Action Plan for Post-Workshop Process (Room 1416)
Panelists:

– Ilkay Altintas
– Wahid Bhimji
– Nicola Ferrier
– Anita Nikolich

• 15:30 - 16:00 Break

• 16:00 - 16:30 Final Thoughts and Next Steps (Room 1416)

• 16:30 - 17:00 Closing Remarks and Adjournment (Room 1416)

• 17:00 - 18:00 Return Shuttles to Crowne Plaza
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C Survey Results NAIRR Software Workshop

December 2024
The survey results from the December NAIRR Software Workshop highlight several insightful trends regard-
ing attendee interests and experiences.

Examining the research domains represented at the workshop (Figure 10), computer science emerges as
the dominant field, followed by physical sciences, indicating these disciplines are heavily engaged with AI
software. Biological and environmental sciences, along with engineering, represent smaller yet significant
user bases.

Figure 10: Research domains Figure 11: Expertise level

In terms of expertise (Figure 11), the workshop audience primarily consists of advanced and expert-level
users, illustrating the depth of knowledge and skill within the community. Intermediate users also comprise
a notable segment, with beginners and participants at the basic level constituting a smaller fraction.

The challenges identified by participants (Figure 12) primarily include access to infrastructure, data man-
agement, and model scaling. Software setup and documentation issues also represent significant hurdles,
pointing to areas where improved tools and resources could benefit the community.

Figure 12: Challenges faced in using AI tools
and infrastructure

Figure 13: Software used

The analysis of software tools utilized by attendees (Figure 13) reveals a strong preference for PyTorch, Hug-
gingFace, and Scikit-learn, reflecting their prominence in AI and machine learning communities. TensorFlow
and various APIs are also notably used, though to a lesser extent.

When considering hardware preferences (Figure 14), GPUs stand out as the most widely used hardware,
aligning with their suitability for computationally intensive AI tasks. CPUs and edge devices also play
substantial roles, though specialized AI accelerators remain less common.
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Figure 14: Hardware used Figure 15: Dataset sizes

Dataset sizes utilized by attendees (Figure 15) tend to cluster predominantly between gigabytes and hundreds
of gigabytes, with fewer attendees working with terabyte-scale datasets. This suggests moderate-to-large-
scale data analysis is standard among participants.

AI usage status (Figure 16) indicates nearly universal engagement, with most attendees actively using AI
technologies in their work. Only a minimal fraction is currently not using AI but is planning to adopt it.

Figure 16: AI usage Figure 17: AI applications

AI applications among attendees (Figure 17) are most prominent in model development and optimization,
with inference and data curation closely followed. Evaluation metrics are also an important focus, empha-
sizing robust and validated AI solutions within the community.
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