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AGENDA
Times Item Owner

8:30 Executive Session Review Chair

9:00 Welcome Mike Papka

9:10 Project Overview Jini Ramprakash

9:40
Technical Overview and Early Science Kevin Harms

Chris Knight

10:15 Break

10:30 Technical Requirements Taylor Childers

11:30 Benchmarks Chris

12:15
(Working Lunch)

Discussion & Questions from the committee

ALCF-4 Team

12:30 (Working Lunch) Executive Session Review Chair

13:30 Facilities Jon Cisek

14:15 ALCF-4 Risks Review Noah / Jini

15:00 Break

15:15 Executive Committee Q&A with ALCF-4 team Review Chair

15:45 Executive Writing Session Review Chair

17:00 Adjourn / Tour of Aurora Susan Coghlan

18:00 Dinner



CHARGE QUESTIONS

1. Is the technical approach appropriate to support the ALCF-4 Mission Need 

requirements? 

2. Are the RFP technical requirements reasonable, clear, and consistent 

with the goals and objectives for the ALCF-4 project? 

3. Does the ALCF facility upgrade plan support the system requirements specified 
in the RFP for the onsite options? 

4. Have the major technical risks and appropriate mitigation strategies been 

correctly identified for this stage of the project?



ENABLING DIVERSE WORKLOADS AT-SCALE

▪ As the complexity of scientific questions being asked continues to increase, so to 

does the diversity of computational workloads.

▪ ALCF projects (INCITE, ALCC, ESP, DD, …) have grown to include combinations 

of the 3 traditional Modeling & Simulation, Artificial Intelligence, and Data-

Intensive workloads, often executed within Workflows.

 5 

a proof-of-concept, RMG-Cat successfully discovered the major kinetic pathways for 

CH4 oxidation on nickel; in less than 5 minutes on a single core, RMG-Cat was able to 

find all the same reactions as a microkinetic mechanism developed over several years by 

a team of experts. RMG-cat can use a single node effectively. An entire RMG-Cat run 

can take between a few seconds to a few hours on a personal laptop, but for the purposes 

of this application we only need to know which thermodynamic and kinetic parameters 

are absent or poorly estimated. This node-bound preprocessing step only takes a few 

seconds to evaluate. Once these parameters have been calculated through the workflow 

RMG-Cat can be run entirely as a post-processing step, and if necessary this process can 

be iterated upon until all relevant species are calculated. For each species, and all related 

reactions between those species that RMG-cat does not have information for, we will 

launch an instance of our search suite (KinBot, GAlgo, LRT) in parallel. 

Once the area to search is defined KinBot and GAlgo will use learning techniques such as 

genetic algorithms to efficiently explore the PES. These efficient searches will require 

hundreds of thousands (10
6
) of individual energy evaluations and will simultaneously 

learn a low rank tensor (LRT) approximation of the PES that will be used to expedite the 

search and to calculate the kinetic and thermochemical parameters.  

Each of these searches will be carried out in the following manner, as shown in figure 1. 

At each step, GAlgo proposes a configuration to evaluate an objective function that 

measures the proximity of that particular configuration to a critical point of interest (e.g. 

saddle point or a local minimum). The configuration is represented by RxN matrix, where 

R is the number of configurations, and N is the dimensionality (e.g. for normal 

coordinates N=3a-6 where a is the number of nuclei), while the objective function 

requires KinBot to evaluate the PES from a computational chemistry application such as 

NWChem, as well as gradients with respect to each dimension, leading to a matrix of size 

Rx(N+1). GAlgo then uses the objective function value to propose a new configuration as 

it proceeds with the search of saddle points. KinBot generates input and parses output 

from simulations to feed these energies and gradients into LRT. LRT will need the 

aggregated number of PES evaluations input/output pairs, as MxN and Mx1 matrices, 

respectively, where M is the total, aggregated number of PES evaluations. The 

constructed LRT approximation (stored as a coefficient tensor) will be invoked instead of 

the PES evaluation if GAlgo's imposed accuracy tolerance is met. Our current estimates 

for the above dimensionalities are: N~100, M~10
6
, and R~10

4
.  

 

Figure 1: Application workflow 
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Figure 1:  Data flow and summary of the FRNN algorithm 
 

Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 

positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

Figure 1: Workflow of the proposed simulations 

2e. Application Summary  

The proposed simulations embody a complex 

workflow, which integrates several codes and 

algorithms, as illustrated in Figure 1. Data will be 

generated by the electronic structure layer, comprising 

the Quantum Espresso
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 code for generating low-cost, 

low-fidelity DFT data and the BerkeleyGW code for 

generating high-cost, high-fidelity MBPT data. Data 

from quantum mechanical simulations will flow into 

two layers of machine learning, a discovery layer and a 

decision layer. The discovery layer includes feature 

selection, using the SISSO code, to identify low-cost 

features that correlate strongly with high-cost excited 

state properties, as well as algorithms such as subgroup 

discovery
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 to reveal patterns in data. The discovery layer will further promote deeper understanding of 

the underlying physics. Information from the discovery layer will feed into the decision layer, in which 

Bayesian optimization algorithms will decide which data points to sample next and at what level of 

fidelity. Decisions will be translated to queries of the CSD database, a large repository of unlabeled data, 

and coordinates of structures pulled out of CSD will be fed back into the electronic structure layer to 

acquire labels. This process will repeat iteratively in order to refine our models. Structures identified as 

promising candidates at any point will be further evaluated using high-fidelity GW+BSE calculations to 

accurately predict their electronic and optical properties. Due to the high computational cost of MBPT 

calculations of large periodic systems with several hundred atoms, we expect most of the computer time 

requested to be spent on BerkeleyGW calculations. The computational cost of DFT and ML calculations 

is negligible in comparison. Therefore, the proposed development plan is focused primarily on the 

BerkeleyGW code. Additional goals are scalability improvements of SISSO and development of Python 

workflow management tools to integrate and automate the whole workflow.  

2e.i. Application Software Requirements 

Quantum ESPRESSO: 

Language: FORTRAN-90 
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW 

Parallelism: MPI, OpenMP 

Past DOE Readiness Programs: NESAP for Cori 

BerkeleyGW: 

Language: FORTRAN 2008 

Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW 

IO Libraries: Parallel HDF5 

Past DOE Readines Programs: NESAP For Cori 

SISSO: 
Language: FORTRAN 
Libraries: BLAS, LAPACK 
Parallelism: MPI 
Past DOE Readines Programs: optimization on Theta is underway within INCITE project 

Multi-fidelity Bayesian Optimization:  

Language: Python 

Libraries: cuDNN, CUDA, Tensorflow, Pytorch 

Parallelism: CUDA on GPUs 



ALCF-4 BENCHMARK VISION

▪ Identify a representative subset of ALCF workloads ensuring user community is 

able to explore new science and the ALCF-4 system is competitive.

▪ Support for “3-pillars” of computing

— Modeling & Simulation (ModSim)

• Traditional fp64/fp32 computing (w/ mixed precision)

• Portability

— AI/ML

• Training and inference using industry standard frameworks

• Integration with ModSim applications

— Data Intensive

• Processing and analysis of data (throughput focus)

• Potentially more integer instructions



ALCF-4 BENCHMARK VISION

▪ Diverse set of benchmarks

— Programming languages & models

— Run configurations (e.g. # MPI ranks per device)

— Stress different components of SW & HW

▪ Weak- and Strong-scale to full-machine

— Various combinations of workloads: ”Hero” runs & ensembles

▪ Intend to use Aurora to measure baseline Figure-of-Merits (FOM) and project 
performance

— Profile data from Aurora will be shared to help vendors with their estimates

— Work-in-progress…



ALCF-4 BENCHMARK VISION

▪ Benchmarks are aligned with top priorities called out in (draft) RFP to support 
current and future ALCF users

— C/C++, Fortran, and Python

— OpenMP and SYCL

— AI Frameworks

— …

▪ Recognize growing importance of utilizing lower precision data types for 
performance (i.e. mixed precision algorithms)

▪ Workflows include multiple computational elements, often with different hardware 
and software requirements and complex inter-dependencies.



ALCF-4 MODSIM BENCHMARKS

▪ HACC

— Extreme-scale cosmological simulation code

▪ nekRS

— Computational fluid dynamics (CFD) solver

▪ Thornado

— Spectral neutrino transport in stellar astrophysics simulations

▪ QMCPACK

— Quantum Monte Carlo simulations

▪ Algorithmic Patterns

— Dense Linear Algebra, Monte Carlo, FFTs, Particles, Structured Grids, pt2pt, 
all2all, …



ALCF-4 AI/ML BENCHMARKS

▪ Benchmarks

— Dense and Sparse model pre-training (GPT & MOE)

— 3D Vision Transformers

— Distributed GNN (coupled with simulations)

— Inference Suite

— Clustering at Scale (traditional ML)

▪ ALCF making impactful contributions to developing AI/ML Benchmarks

HPC, Storage, 

Science, AI Safety

ALCF AI Testbed

SC’24 Gordon Bell Finalist 

scaling on 5 diverse systems



ALCF-4 WORKFLOW BENCHMARKS

▪ Static Worker

— Single task launches worker tasks, which then manage execution of sub-tasks

— Targets hardware with different granularity and spanning across nodes.

▪ Multi-size Ensemble

— Execute set of single- or multi-rank MPI tasks running same application but 
with different sizes and/or input decks

— Tests capabilities of “mpiexec” launcher

▪ Heterogeneous Workflows

— Varied set of tasks requiring periodic data/meta-data/ML model 

synchronization across components

— Involves frequent movement of large data across the interconnect



ALCF-4 BENCHMARKS DRAFT

▪ Preparing superset of benchmarks spanning ModSim, AI/ML, and Workflows

— Standard benchmarks also included

• GEMM (multiple precisions), STREAM, 

▪ GitHub Repo:

— Work-in-Progress

— Instructions for obtaining code, building, running, and validating results

— Codes expected to remain static once finalized

▪ Offeror’s will be requested to provided baseline projections

— Also able to provide “optimized” projections

https://github.com/argonne-lcf/alcf4_benchmarks

https://github.com/argonne-lcf/alcf4_benchmarks


ANY QUESTIONS?
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