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Problem setup

minimize f(x) = h(S(x))
subject to: x € D C R"

where the objective f depends on the output(s) from a simulation S and a known function h.
» Assume derivatives of S are not available
» The dimension n is small

> Evaluating S is expensive

» Constraints defining D may or may not depend on S
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Quantum Fisher information

» A quantum analogue to classical Fisher information (which describes how sensitive a model is
to changes in a parameter.)
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Quantum Fisher information

» A quantum analogue to classical Fisher information (which describes how sensitive a model is
to changes in a parameter.)

> A central quantity in quantum sensing.
» Classical: for n independent sensors sensing a physical parameter, the precision is improved

o(L).

> Quantum: the precision is improved O(2).
> For a state with density matrix p(x) = Z,N i [¥i) (], the QFl is
H) = ! J A H |;
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Quantum Fisher information

» A quantum analogue to classical Fisher information (which describes how sensitive a model is
to changes in a parameter.)

» A central quantity in quantum sensing.
» Classical: for n independent sensors sensing a physical parameter, the precision is improved

O(L)-

> Quantum: the precision is improved O(2).
> For a state with density matrix p(x) = Z,’-V i [¥i) (], the QFl is
AP — A
H) = — (Wil H |¢;

ij

» For large N, computing the QFI can be prohibitively difficult. Many papers maximize (upper)
bounds of QFI



Maximizing concurrence

» Pairwise concurrence is measured by

Cyj = max{0, VA1 = VA2 = VA5 — v/,

where A, are the (descending) eigenvalues of a density matrix relating particles / and ;.
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Maximizing concurrence
» Pairwise concurrence is measured by
C,'J' = max{O, \V >\1 -V Ao — vV A3 — \ )\4},

where A, are the (descending) eigenvalues of a density matrix relating particles / and ;.

» Possible goal: Identify quantum system parameters x solving

maximizez Gi(x)?
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Scaling up quantum devices is a challenge

> Fixed-frequency transmons are an appealing technology due to their long coherence times
(~100 us)
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Scaling up quantum devices is a challenge

» Fixed-frequency transmons are an appealing technology due to their long coherence times
(~100 ws)

» Scaling fixed-frequency architectures requires precise relative frequency requirements.

» Want to avoid collisions in frequencies.
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Hertzberg et al., https://arxiv.org/pdf/2009.00781.pdf
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Frequency collisions can take a variety of forms

» f; avoid the 0 — 1 transitions of j:

|fi — fi| > 61 v(i,j) e E
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> f; avoid the 0 — 1 transitions of J:

|fi — fi] > 61 v(i,j) e E

» Other types of collisions are more subtle: Can happen when the sum of frequency of the
target and a neighbors is equal to the frequency of the |0) — |2) 2 photon transition.
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Frequency collisions can take a variety of forms

> f; avoid the 0 — 1 transitions of J:

|fi — fi] > 61 v(i,j) e E

» Other types of collisions are more subtle: Can happen when the sum of frequency of the
target and a neighbors is equal to the frequency of the |0) — |2) 2 photon transition.

|2f; + a; — fx — ;| > 07
Vj, k€ Ns.t. 3i € N with (i,j) € E and (i, k) € E or (k,i) € E

» A possible objective:
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Two solutions on 6-node ring

Yield for collision free sample
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