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Problem setup

minimize
x

f (x) = h(S(x))

subject to: x ∈ D ⊂ Rn

where the objective f depends on the output(s) from a simulation S and a known function h.

▶ Assume derivatives of S are not available
▶ The dimension n is small
▶ Evaluating S is expensive
▶ Constraints defining D may or may not depend on S
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Quantum Fisher information
▶ A quantum analogue to classical Fisher information (which describes how sensitive a model is

to changes in a parameter.)

▶ A central quantity in quantum sensing.

▶ Classical: for n independent sensors sensing a physical parameter, the precision is improved
O( 1√

n ).
▶ Quantum: the precision is improved O( 1

n ).

▶ For a state with density matrix ρ(x) =
∑N

i λi |ψi ⟩ ⟨ψj |, the QFI is

F(ρ(x),H) =
∑
i ,j

λi − λj

2(λi + λj)
|⟨ψi |H |ψj ⟩|

▶ For large N, computing the QFI can be prohibitively difficult. Many papers maximize (upper)
bounds of QFI
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Maximizing concurrence
▶ Pairwise concurrence is measured by

Cij = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4},

where λk are the (descending) eigenvalues of a density matrix relating particles i and j .

▶ Possible goal: Identify quantum system parameters x solving

maximize
x

∑
ij

Cij(x)2
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Scaling up quantum devices is a challenge
▶ Fixed-frequency transmons are an appealing technology due to their long coherence times

(∼100 µs)

▶ Scaling fixed-frequency architectures requires precise relative frequency requirements.
▶ Want to avoid collisions in frequencies.

Hertzberg et al., https://arxiv.org/pdf/2009.00781.pdf
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Frequency collisions can take a variety of forms
▶ fi avoid the 0 7→ 1 transitions of j :

|fi − fj | ≥ δ1 ∀(i , j) ∈ E

▶ Other types of collisions are more subtle: Can happen when the sum of frequency of the
target and a neighbors is equal to the frequency of the |0⟩ → |2⟩ 2 photon transition.

|2fi + αi − fk − fj | ≥ δ7
∀j , k ∈ N s.t. ∃i ∈ N with (i , j) ∈ E⃗ and (i , k) ∈ E⃗ or (k , i) ∈ E⃗

▶ A possible objective:

maximize
∑

i

wiδi

with δi ≥ δ̄i .
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Two solutions on 6-node ring
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