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energies, we optimized the structures of the neutral precursors by
EOM-IP-CCSD/cc-pVTZ. The electronic structure calculations
reported here were performed using the Q-Chem package.82,83

3 Results
All cyanopolyyne anions considered in this work are linear
species with alternating single and triple bonds (Fig. 2). In the
ground state, they have a closed-shell electronic configuration of
1S+ symmetry. The molecular orbital analysis of the detached
and excited states studied here reveals two classes of orbitals
involved in the relevant electronic transitions.

The first class comprises the two sets of orthogonal and
degenerate p orbitals. The second class comprises a lone pair
located on the terminal carbon—this orbital is of s type. The p
system in the C2n!1N! anions is similar to the p system in
conjugated polyynes. Hence, one can employ the Hückel model
to interpret the trend in energies of the p orbitals with respect
to the carbon chain length. In accordance with the Hückel
model predictions, the energy of the frontier p orbitals
increases (lowering the respective detachment energy) and the
energy of p* orbitals decreases, as the length of the carbon
chain increases. This trend is illustrated in Fig. 3. In contrast,
the s orbital becomes more bound in longer carbon chains,
which can be rationalized in terms of the electrostatic inter-
action between the lone electron pair and the increasing dipole
moment of the neutral core.

The opposite trends in the energetics of the frontier occupied
orbitals (p and s) clearly manifest themselves in the computed
electron detachment energies. Table 1 presents the calculated
vertical detachment energies for the two lowest detached states
of 2S+ and 2P symmetry. A 2S+ radical is obtained by removing
an electron from the s orbital of the anion, whereas electron
detachment from p orbital leads to a 2P radical, as illustrated by
the shapes of the corresponding Dyson orbitals in Fig. 4.

As expected, the Dyson orbitals for the 2S+ states have axial
symmetry with highest electron density at the carbon end of the
chain. The Dyson orbitals for the 2P states have a typical nodal
structure of p orbitals and are delocalized over the entire chain,
following the Hückel model prediction (Fig. 3). Table 1 shows
that all anions have a large electron detachment energy: B4 eV
or more. Forming 2S+ radicals is more favorable in shorter
carbon chains, whereas 2P radicals become preferable in
longer species, which leads to the change of the ground state
from 2S+ to 2P as the carbon chain increases. Directly comparable
with experimental measurements are the adiabatic detachment
energies (ADE). Table 2 summarizes our calculated ADEs together
with the available experimental values.57,58,84 The discrepancies
between theory and experiment are within 0.2–0.3 eV, as expected
for EOM-CCSD. According to our calculations, the cross-over
between the 2S+ and 2P states occurs in C5N, both adiabatically
and vertically. The most recent photoelectron spectroscopic
study58 found that the ground state of C5N is still 2S+, whereas
the 2P state is located 0.069" 0.015 eV above the 2S+ threshold.

Fig. 2 Four cyanopolyyne anions studied in this work.

Fig. 3 Frontier molecular orbitals in cyanopolyyne anions.

Table 1 Vertical detachment energies (VDE) of the anions (in eV) and
dipole moments m (in debye) of the neutral radicals

Molecule VDE (2S+) m (2S+) VDE (2P) m (2P)

CN! 3.99 1.35 5.28 0.18
C3N! 4.67 3.87 4.79 0.14
C5N! 4.98 5.86 4.70 0.11
C7N! 5.22 7.97 4.71 0.03

Fig. 4 Dyson orbitals of cyanopolyyne anions corresponding to the
formation of the 2S+ (left) or 2P (right) neutral radicals.
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3 Computational details
As explained above, we describe the electronic states of C2

! and C2 using EOM-IP-
CCSD and EOM-DIP-CCSD, respectively, using the dianionic reference (see Fig. 2).
In real-valued EOM-CCSD calculations, we used the aug-cc-pVTZ basis. In the
CAP-augmented CCSD and EOM-IP-CCSD calculations, we used the aug-cc-
pVTZ+3s3p and aug-cc-pCVTZ+6s6p6d basis sets (the exponents of the additional
diffuse sets were generated using the same protocol as in our previous
studies54,81). Two core orbitals, s1s and s*

1s, were frozen in correlated calculations
except when employing the aug-cc-pCVTZ basis. In the calculations using aug-cc-
pVTZ+3s3p, the CAP onset was set according to the expectation value of R2 of the
triplet UHF wave function of C2 (at rCC ¼ 1.28 Å, the onsets were: x0 ¼ y0 ¼ 1.6 Å,
z0 ¼ 2.6 Å). In the calculations with aug-cc-pCVTZ+6s6p6d, the CAP onset was set
according to the expectation value of R2 of the dianion computed using CCSD/
aug-cc-pCVTZ (at rCC ¼ 1.2761 Å, this gave x0 ¼ y0 ¼ 2.4 Å, z0 ¼ 3.6 Å). A rst-
order correction53 was applied to the computed total energy and then optimal
values of h were determined from these corrected trajectories using our standard
protocol.53,54 All electronic structure calculations were carried out using the Q-
Chem package.83,84 The calculations of partial widths were carried out using
ezDyson.85

4 Results and discussion
4.1 C2

Fig. 3 shows the potential energy curves of the low-lying singlet and triplet states
of C2 computed using EOM-DIP-CCSD/aug-cc-pVTZ. The respective electronic
congurations, equilibrium distances, and term values are summarized in
Table 1, which also presents MR-CISD+Q/cc-pVTZ results from ref. 34 and the
experimental values. As one can see, C2 features 10 electronic states within
#24 000 cm!1 (about 3 eV).

Fig. 3 Potential energy curves of the low-lying singlet and triplet states of C2.
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triples cancels out for the DBS, because the unpaired electron does
not participate in the bonding.

Because of their structural similarity, we also expect the
vibrational frequencies of the neutral and DBS to be similar,
giving rise to DZPE E 0. ZPEs of the neutral and the VA states
were computed within the harmonic approximation with CCSD
and EOM-EA-CCSD using aug-cc-pVDZ and resolution-of-the-
identity (RI) approximation50,51 with the matching basis set
(ri-aug-cc-pVDZ), at the geometries optimized at the same level
of theory. The computed structures and normal modes were
used to compute the Franck–Condon factors within parallel-
mode double-harmonic approximation using the ezSpectrum
software;52 these calculations used T = 300 K. To further
elucidate putative contributions of the DBS to the spectra, we
computed photoelectron cross sections using EOM-EA-CCSD
Dyson orbitals and the ezDyson software.53

To correctly describe DBS, large basis sets with additional
sets of diffuse functions are needed. We used the aug-cc-pVTZ
basis augmented with several extra sets of diffuse functions
added to each atom, with the exponents obtained following the
same procedure as in our previous studies;23,54–57 the details
are provided in the ESI.† Our preliminary calculations monitor-
ing the convergence of the VAE of the DBS showed that the
results converge with the aug-cc-pVTZ+6s3p(3s) basis. Here,
‘‘6s3p’’ refers to the additional diffuse functions placed at the
heavy atoms and ‘‘(3s)’’ to those placed at the hydrogen atoms.
Below we report the energetics of the bare benzonitrile anion
obtained with aug-cc-pVTZ+6s3p(3s). For the C6H5CN!"H2O
complex, the VAE of the DBS converged with the aug-cc-
pVTZ+4s4p(4s) basis. Thus, for the benzonitrile–water complex,
we report energetics obtained with aug-cc-pVTZ+4s4p(4s).

All electronic structure calculations were performed using
the Q-Chem package.58,59 Below we report symmetry labels
using Mulliken’s convention.60 Basis sets, relevant Cartesian
coordinates, and vibrational frequencies are given in the ESI.†

4 Results and discussion
4.1 Benzonitrile anions

Fig. 2 shows Dyson orbitals of the two lowest states of the
benzonitrile anion, 2A1 and 2B1. The shape of the orbitals
identifies the former as DBS and the latter as VA. In the VA
state, the unpaired electron resides on a relatively compact
p*-like orbital of b1 symmetry, giving rise to the 2B1 state. The
Dyson orbital for the DBS is a diffuse s-like orbital located on
the opposite end of the cyano-group, giving rise to the 2A1 state.
The DBS is supported by the large dipole moment of benzonitrile,
4.57 Debye (CCSD/aug-cc-pVTZ).

Fig. 4 shows the schematic energy diagram of the neutral
benzonitrile and the two anionic states. The energies shown in
the figure are our best estimates of AEAs (EOM-EA-CCSD/CCSD
with triples corrections, plus ZPE); the contributions of
different components are given in Table 1. The present EOM-
EA-CCSD calculations reveal that at the neutral’s equilibrium
geometry (RN), the VA state is electronically unbound, and the

only bound anionic state is the DBS, with the VEA of 0.024 eV.
This finding is consistent with the corresponding results of
Adamowicz and co-workers,25 who reported the VDE of the DBS
to be 0.019 eV with CCSD(T). However, at the optimized
geometry of the valence anion, both the DBS and VA are
(vertically) bound by 0.026 eV and 0.064 eV, respectively. The
latter value is in excellent agreement with the experimental VDE
of 0.058(5) eV, previously assigned to the VA.24 We note that
this value is a significant improvement over the corresponding
EOM-IP-CCSD value of 0.047 eV, which was obtained using
a less balanced protocol based on the open-shell anionic
reference and a smaller basis set.24

Considering only the electronic energies (computed with
EOM-EA-CCSD), the DBS minimum is 0.139 eV below the
minimum of the VA and the VA is adiabatically unbound (as
indicated by the negative AEAee). However, the ZPE correction
makes the VA adiabatically bound by 0.011 eV. A relatively large
effect of DZPE (0.126 eV) favoring the VA can easily be rationa-
lized by the shapes of the respective Dyson orbitals (Fig. 3):
because the electron is attached to the p* orbital, the vibra-
tional modes of the anion become softer, thus lowering the
magnitude of ZPE relative to the neutral. The mode that is most
affected by electron attachment is the butterfly mode. The
frequency of this mode softens by B170 cm!1 upon electron
attachment, which is clearly illustrated in Fig. 5 by the
reduction of the curvature of the potential energy profile. The
frequencies are given in Table S1 in the ESI.†

The inclusion of perturbative triple excitations increases
the attachment energy of the VA by 0.068 eV. Thus, the VA is

Table 1 Attachment and detachment energies (in eV) for valence (2B1)
and dipole-bound (2A1) anions of benzonitrile

State VAEa VDEa AEAee
a DZPEb D(T)c AEAd

2A1 !0.0240 0.0240 0.0240 B0 B0 0.024
2B1 NBe 0.0639 !0.1150 0.1256 0.0677 0.078

a EOM-EA-CCSD/aug-cc-pVTZ+6s3p(3s). b RI-CCSD/RI-EOM-EA-CCSD
and aug-cc-pVDZ for the VA. c EOM-EA-CCSD(T)(a)*/aug-cc-pVTZ for the
VA. d AEA including DZPE and triples’ correction. e Electronically not
bound.

Fig. 3 Dyson orbitals for the two lowest electronic states of the
benzonitrile anion, 2A1 and 2B1, computed at the respective optimized
geometries. Isovalue 0.007.
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Different target states accessed by different type 
EOM operators. Green arrows represent electron 
and black line represent molecular orbital 
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T̂
Φ0

ΨEOM = R̂ ΨCC
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R = R1 +R2 +R3 + ....

ΨCC = e
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ΨEOM = R̂ ΨCC

T̂ = T1 + T2 + T3 + ....

R̂ = R1 +R2 +R3 + ....

T is CC excitation operator 
R is EOM operator (depends on flavor)
When both truncate at singles and 
doubles (2 order term) 
it is called EOM-CCSD
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FIG. 1: Quantum circuit for the two fermion and three
molecular orbital (for example H+

3 in STO-3G basis).

The Givens rotations provide a useful canonical characteri-
zation of an arbitrary orthogonal matrix, W . The QR decom-
position of a real n⇥n orthogonal matrix W can be done using
T = n(n�1)/2 Givens rotations such that

W = G1G2G4...GT D (11)

When W has determinant of one, D is just the identity matrix.
Each Givens rotation, Gi, is of the form Gi = g(a,b,q) with
gkk = 1 unless k is either a or b when instead gkk = cos(q). All
off-diagonal elements are zero except gab =�gba =�sin(q).

Applications of the Givens decomposition to fermionic or-
bital rotations has been worked out elsewhere44,46 resulting in
a quantum circuit that is able to prepare arbitrary Slater deter-
minants following the parameters of the QR decomposition.
By ordering the QR decomposition appropriately, a fermionic
swap network can be used to rotate each pair of orbitals us-
ing the appropriate Givens rotation parameters. This results
in an efficient state preparation circuit of the form depicted in
fig. 1. The full compilation down to gates including hardware
optimization is given elsewhere40,47.

Our characterization of the fermionic space in eq. (7) gives
us a set of parameters, Q that also characterizes the mixing
between pairs of orbitals. The resulting orthogonal transfor-
mation W (Q) is then given to the QR decomposition and for-
warded to the quantum circuit construction.

III. CALCULATIONS AND RESULTS

All calculations of the molecular system are done in the
STO-3G basis42. Energies are reported in Hartrees, angles of
rotation in radians, and bond lengths in Angstroms.

The Hartree-Fock energy surfaces (HES) were computed
using PySCF48,49. In this paper we only consider Restricted
Hartree-Fock (RHF) solutions where the alpha and beta spa-
tial orbitals are restricted to be identical. The quantum op-
timization routines were that of OpenFermion-Cirq and we
only modify the initial state routines and the input molecular
data50. The data that support the findings of this study are
available from the authors upon reasonable request.

A. Landscape analysis

We consider H2, H+
3 as minimal basis model systems whose

Hartree-Fock instances we can completely characterize. We

begin with the H2 example.

When considering H2 in the minimal basis with there is
only a single orbital mixing parameter. In fig. 2, we have
plotted the 1D HES surface as a function of bond length for
H2. The number of minimums in HES(q ) changes with bond
length. Before a bond length of approximately 1.2 Å, there is
only a single minimum. But at larger bond lengths an addi-
tional minimum begins to appear.
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FIG. 2: H2 HES(q ; rHH). Each fixed value of the nuclear
separation, rHH, generates a Hartree-Fock instance

characterized by a single the orbital rotation parameter, q .
Notice the appearance of a second HES minimum at a higher

energy around r ⇡ 1.2 Å.

We continue with our two electron examples with the iso-
electronic H+

3 . Now, instead of a 1D HES, we now have two
parameters that mix the one occupied orbital with the two vir-
tual orbitals. We plot the HES in fig. 3 for a linear configura-
tion with hydrogen atoms separated by 2.5 Å. There are three
minimums for HES(q1,q2). In fig. 4 we give the HES of H+

3
at 4.36 Å where there are several minimums with the same
globally optimal value.

FIG. 3: H+
3 HES(q1,q2), showing three different minimums

(global minimum - �, second minimum - N and third
minimum - ⇥ ) at rHH = 2.5 Å. Here the surface is expanded

about P0 = Pcore.

In both the case of H+
3 and H2, there is a single occupied

(spatial) orbital occupied and m virtual orbitals. For m = 2,

HF-QC 4

FIG. 4: The H+
3 HES(q1,q2) surface for fixed bond length at

rHH = 4.36 Å. Here the surface is expanded about P0 = Pcore.

this leads to an Ablock generator of the form

Ablock =

2

4
0 �q1 �q2
q1 0 0
q2 0 0

3

5 (12)

The eigenvalues of this matrix are l± = {0,±i

q
q 2

1 +q 2
2 }.

Since the matrix exponential of Ablock merely exponentiates
the eigenvalues, when l± = ip , the rotation acts trivially on
the density matrix. This underlies periodicity to the plots seen
in 3 and 4.

We can explain the periodicity in terms of this invari-
ant by converting to polar coordinates where q1 = Rcosf
and q2 = Rsinf . Now the nontrivial eigenvalue is l± =
±iR and we can express the periodicity of the plots as
HES(q1,q2)=HES(R,f) =HES(R+np,f) with n an integer.

There is a nice generalization of this fact. For a single spa-
tial orbital that is doubly occupied with two electrons and m

virtual orbitals, the generalization of eq. (12) is

Ablock =

2

6666664

0 �q1 �q2 �q3 . . . �qm

q1 0 0 0 . . . 0
q2 0 0 0 . . . 0
q3 0 0 0 . . . 0
...

...
...

...
. . .

...
qm 0 0 0 . . . 0

3

7777775
(13)

It is straightforward to calculate that the eigenvalues of this
matrix are zero except l± = ±i

q
q 2

1 +q 2
2 +q 2

3 + ...+q 2
m

.
Following the same argument as in the m = 2 case above, we
can say that

HES(Q) = HES(R,F) = HES(R+np,F) (14)

where R =
q

q 2
1 + ...+q 2

m
.

Therefore, the range of the minimal required search space
for each q j is restricted to a hyper-sphere with radius p of di-
mension m. But, the default search space was a hyper cube
of dimension m with side 2p . Now, the ratio of minimal re-
quired search space with default search goes to zero as m tends
to infinity. This is a well known consequence of the vanish-
ing ratio of the volume of a hyper-sphere to the volume of the
corresponding hyper-cube51,52.

B. Convergence analysis

We used the quantum algorithm outlined in ref.40 for ob-
taining RHF solutions for four examples. Depending on initial
guess it may converge to local rather global solutions.

The different initial guess were generated using the Givens
rotations corresponding to different minimums in figs. 2 and 3,
respectively. The results for H2, converging to two different
minimums on quantum simulator is shown in fig. 5. Simi-
larly results for H+

3 , converging to two different minimums on
quantum simulator is shown in fig. 6. In fig. 5, the values of
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FIG. 5: Convergence of the HF quantum optimization to
different minimums for the Hartree-Fock instance of H2 at
rHH = 1.5 Å in a minimal basis. Depicted are two initial

conditions obtained by adding a offsets of differing strengths,
l , to the global ground state. The value used in the

Open-Fermion implementation was l = 0.1.

l = 1 and l = 1.2 were chosen as states far enough in param-
eter space to have energy sufficiently large. If we select states
with small l , the convergence to the minimum is highly likely
so long as the system does not climb uphill in energy since
the initial state has energy less than all minimums except the
global minimum.
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FIG. 6: Convergence of the HF quantum optimization to
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3 at
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conditions obtained by adding a offsets of differing strengths,
l , to the global ground state.

As final examples, we choose diatomic carbon and its
cation. We also consider C2 and C2+

2 as instances that are
commonly known to confound solvers due to the appearance
of saddle points with in the optimization landscape. To illus-
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energies, we optimized the structures of the neutral precursors by
EOM-IP-CCSD/cc-pVTZ. The electronic structure calculations
reported here were performed using the Q-Chem package.82,83

3 Results
All cyanopolyyne anions considered in this work are linear
species with alternating single and triple bonds (Fig. 2). In the
ground state, they have a closed-shell electronic configuration of
1S+ symmetry. The molecular orbital analysis of the detached
and excited states studied here reveals two classes of orbitals
involved in the relevant electronic transitions.

The first class comprises the two sets of orthogonal and
degenerate p orbitals. The second class comprises a lone pair
located on the terminal carbon—this orbital is of s type. The p
system in the C2n!1N! anions is similar to the p system in
conjugated polyynes. Hence, one can employ the Hückel model
to interpret the trend in energies of the p orbitals with respect
to the carbon chain length. In accordance with the Hückel
model predictions, the energy of the frontier p orbitals
increases (lowering the respective detachment energy) and the
energy of p* orbitals decreases, as the length of the carbon
chain increases. This trend is illustrated in Fig. 3. In contrast,
the s orbital becomes more bound in longer carbon chains,
which can be rationalized in terms of the electrostatic inter-
action between the lone electron pair and the increasing dipole
moment of the neutral core.

The opposite trends in the energetics of the frontier occupied
orbitals (p and s) clearly manifest themselves in the computed
electron detachment energies. Table 1 presents the calculated
vertical detachment energies for the two lowest detached states
of 2S+ and 2P symmetry. A 2S+ radical is obtained by removing
an electron from the s orbital of the anion, whereas electron
detachment from p orbital leads to a 2P radical, as illustrated by
the shapes of the corresponding Dyson orbitals in Fig. 4.

As expected, the Dyson orbitals for the 2S+ states have axial
symmetry with highest electron density at the carbon end of the
chain. The Dyson orbitals for the 2P states have a typical nodal
structure of p orbitals and are delocalized over the entire chain,
following the Hückel model prediction (Fig. 3). Table 1 shows
that all anions have a large electron detachment energy: B4 eV
or more. Forming 2S+ radicals is more favorable in shorter
carbon chains, whereas 2P radicals become preferable in
longer species, which leads to the change of the ground state
from 2S+ to 2P as the carbon chain increases. Directly comparable
with experimental measurements are the adiabatic detachment
energies (ADE). Table 2 summarizes our calculated ADEs together
with the available experimental values.57,58,84 The discrepancies
between theory and experiment are within 0.2–0.3 eV, as expected
for EOM-CCSD. According to our calculations, the cross-over
between the 2S+ and 2P states occurs in C5N, both adiabatically
and vertically. The most recent photoelectron spectroscopic
study58 found that the ground state of C5N is still 2S+, whereas
the 2P state is located 0.069" 0.015 eV above the 2S+ threshold.

Fig. 2 Four cyanopolyyne anions studied in this work.

Fig. 3 Frontier molecular orbitals in cyanopolyyne anions.

Table 1 Vertical detachment energies (VDE) of the anions (in eV) and
dipole moments m (in debye) of the neutral radicals

Molecule VDE (2S+) m (2S+) VDE (2P) m (2P)

CN! 3.99 1.35 5.28 0.18
C3N! 4.67 3.87 4.79 0.14
C5N! 4.98 5.86 4.70 0.11
C7N! 5.22 7.97 4.71 0.03

Fig. 4 Dyson orbitals of cyanopolyyne anions corresponding to the
formation of the 2S+ (left) or 2P (right) neutral radicals.
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3 Computational details
As explained above, we describe the electronic states of C2

! and C2 using EOM-IP-
CCSD and EOM-DIP-CCSD, respectively, using the dianionic reference (see Fig. 2).
In real-valued EOM-CCSD calculations, we used the aug-cc-pVTZ basis. In the
CAP-augmented CCSD and EOM-IP-CCSD calculations, we used the aug-cc-
pVTZ+3s3p and aug-cc-pCVTZ+6s6p6d basis sets (the exponents of the additional
diffuse sets were generated using the same protocol as in our previous
studies54,81). Two core orbitals, s1s and s*

1s, were frozen in correlated calculations
except when employing the aug-cc-pCVTZ basis. In the calculations using aug-cc-
pVTZ+3s3p, the CAP onset was set according to the expectation value of R2 of the
triplet UHF wave function of C2 (at rCC ¼ 1.28 Å, the onsets were: x0 ¼ y0 ¼ 1.6 Å,
z0 ¼ 2.6 Å). In the calculations with aug-cc-pCVTZ+6s6p6d, the CAP onset was set
according to the expectation value of R2 of the dianion computed using CCSD/
aug-cc-pCVTZ (at rCC ¼ 1.2761 Å, this gave x0 ¼ y0 ¼ 2.4 Å, z0 ¼ 3.6 Å). A rst-
order correction53 was applied to the computed total energy and then optimal
values of h were determined from these corrected trajectories using our standard
protocol.53,54 All electronic structure calculations were carried out using the Q-
Chem package.83,84 The calculations of partial widths were carried out using
ezDyson.85

4 Results and discussion
4.1 C2

Fig. 3 shows the potential energy curves of the low-lying singlet and triplet states
of C2 computed using EOM-DIP-CCSD/aug-cc-pVTZ. The respective electronic
congurations, equilibrium distances, and term values are summarized in
Table 1, which also presents MR-CISD+Q/cc-pVTZ results from ref. 34 and the
experimental values. As one can see, C2 features 10 electronic states within
#24 000 cm!1 (about 3 eV).

Fig. 3 Potential energy curves of the low-lying singlet and triplet states of C2.
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triples cancels out for the DBS, because the unpaired electron does
not participate in the bonding.

Because of their structural similarity, we also expect the
vibrational frequencies of the neutral and DBS to be similar,
giving rise to DZPE E 0. ZPEs of the neutral and the VA states
were computed within the harmonic approximation with CCSD
and EOM-EA-CCSD using aug-cc-pVDZ and resolution-of-the-
identity (RI) approximation50,51 with the matching basis set
(ri-aug-cc-pVDZ), at the geometries optimized at the same level
of theory. The computed structures and normal modes were
used to compute the Franck–Condon factors within parallel-
mode double-harmonic approximation using the ezSpectrum
software;52 these calculations used T = 300 K. To further
elucidate putative contributions of the DBS to the spectra, we
computed photoelectron cross sections using EOM-EA-CCSD
Dyson orbitals and the ezDyson software.53

To correctly describe DBS, large basis sets with additional
sets of diffuse functions are needed. We used the aug-cc-pVTZ
basis augmented with several extra sets of diffuse functions
added to each atom, with the exponents obtained following the
same procedure as in our previous studies;23,54–57 the details
are provided in the ESI.† Our preliminary calculations monitor-
ing the convergence of the VAE of the DBS showed that the
results converge with the aug-cc-pVTZ+6s3p(3s) basis. Here,
‘‘6s3p’’ refers to the additional diffuse functions placed at the
heavy atoms and ‘‘(3s)’’ to those placed at the hydrogen atoms.
Below we report the energetics of the bare benzonitrile anion
obtained with aug-cc-pVTZ+6s3p(3s). For the C6H5CN!"H2O
complex, the VAE of the DBS converged with the aug-cc-
pVTZ+4s4p(4s) basis. Thus, for the benzonitrile–water complex,
we report energetics obtained with aug-cc-pVTZ+4s4p(4s).

All electronic structure calculations were performed using
the Q-Chem package.58,59 Below we report symmetry labels
using Mulliken’s convention.60 Basis sets, relevant Cartesian
coordinates, and vibrational frequencies are given in the ESI.†

4 Results and discussion
4.1 Benzonitrile anions

Fig. 2 shows Dyson orbitals of the two lowest states of the
benzonitrile anion, 2A1 and 2B1. The shape of the orbitals
identifies the former as DBS and the latter as VA. In the VA
state, the unpaired electron resides on a relatively compact
p*-like orbital of b1 symmetry, giving rise to the 2B1 state. The
Dyson orbital for the DBS is a diffuse s-like orbital located on
the opposite end of the cyano-group, giving rise to the 2A1 state.
The DBS is supported by the large dipole moment of benzonitrile,
4.57 Debye (CCSD/aug-cc-pVTZ).

Fig. 4 shows the schematic energy diagram of the neutral
benzonitrile and the two anionic states. The energies shown in
the figure are our best estimates of AEAs (EOM-EA-CCSD/CCSD
with triples corrections, plus ZPE); the contributions of
different components are given in Table 1. The present EOM-
EA-CCSD calculations reveal that at the neutral’s equilibrium
geometry (RN), the VA state is electronically unbound, and the

only bound anionic state is the DBS, with the VEA of 0.024 eV.
This finding is consistent with the corresponding results of
Adamowicz and co-workers,25 who reported the VDE of the DBS
to be 0.019 eV with CCSD(T). However, at the optimized
geometry of the valence anion, both the DBS and VA are
(vertically) bound by 0.026 eV and 0.064 eV, respectively. The
latter value is in excellent agreement with the experimental VDE
of 0.058(5) eV, previously assigned to the VA.24 We note that
this value is a significant improvement over the corresponding
EOM-IP-CCSD value of 0.047 eV, which was obtained using
a less balanced protocol based on the open-shell anionic
reference and a smaller basis set.24

Considering only the electronic energies (computed with
EOM-EA-CCSD), the DBS minimum is 0.139 eV below the
minimum of the VA and the VA is adiabatically unbound (as
indicated by the negative AEAee). However, the ZPE correction
makes the VA adiabatically bound by 0.011 eV. A relatively large
effect of DZPE (0.126 eV) favoring the VA can easily be rationa-
lized by the shapes of the respective Dyson orbitals (Fig. 3):
because the electron is attached to the p* orbital, the vibra-
tional modes of the anion become softer, thus lowering the
magnitude of ZPE relative to the neutral. The mode that is most
affected by electron attachment is the butterfly mode. The
frequency of this mode softens by B170 cm!1 upon electron
attachment, which is clearly illustrated in Fig. 5 by the
reduction of the curvature of the potential energy profile. The
frequencies are given in Table S1 in the ESI.†

The inclusion of perturbative triple excitations increases
the attachment energy of the VA by 0.068 eV. Thus, the VA is

Table 1 Attachment and detachment energies (in eV) for valence (2B1)
and dipole-bound (2A1) anions of benzonitrile

State VAEa VDEa AEAee
a DZPEb D(T)c AEAd

2A1 !0.0240 0.0240 0.0240 B0 B0 0.024
2B1 NBe 0.0639 !0.1150 0.1256 0.0677 0.078

a EOM-EA-CCSD/aug-cc-pVTZ+6s3p(3s). b RI-CCSD/RI-EOM-EA-CCSD
and aug-cc-pVDZ for the VA. c EOM-EA-CCSD(T)(a)*/aug-cc-pVTZ for the
VA. d AEA including DZPE and triples’ correction. e Electronically not
bound.

Fig. 3 Dyson orbitals for the two lowest electronic states of the
benzonitrile anion, 2A1 and 2B1, computed at the respective optimized
geometries. Isovalue 0.007.
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FIG. 1: Quantum circuit for the two fermion and three
molecular orbital (for example H+

3 in STO-3G basis).

The Givens rotations provide a useful canonical characteri-
zation of an arbitrary orthogonal matrix, W . The QR decom-
position of a real n⇥n orthogonal matrix W can be done using
T = n(n�1)/2 Givens rotations such that

W = G1G2G4...GT D (11)

When W has determinant of one, D is just the identity matrix.
Each Givens rotation, Gi, is of the form Gi = g(a,b,q) with
gkk = 1 unless k is either a or b when instead gkk = cos(q). All
off-diagonal elements are zero except gab =�gba =�sin(q).

Applications of the Givens decomposition to fermionic or-
bital rotations has been worked out elsewhere44,46 resulting in
a quantum circuit that is able to prepare arbitrary Slater deter-
minants following the parameters of the QR decomposition.
By ordering the QR decomposition appropriately, a fermionic
swap network can be used to rotate each pair of orbitals us-
ing the appropriate Givens rotation parameters. This results
in an efficient state preparation circuit of the form depicted in
fig. 1. The full compilation down to gates including hardware
optimization is given elsewhere40,47.

Our characterization of the fermionic space in eq. (7) gives
us a set of parameters, Q that also characterizes the mixing
between pairs of orbitals. The resulting orthogonal transfor-
mation W (Q) is then given to the QR decomposition and for-
warded to the quantum circuit construction.

III. CALCULATIONS AND RESULTS

All calculations of the molecular system are done in the
STO-3G basis42. Energies are reported in Hartrees, angles of
rotation in radians, and bond lengths in Angstroms.

The Hartree-Fock energy surfaces (HES) were computed
using PySCF48,49. In this paper we only consider Restricted
Hartree-Fock (RHF) solutions where the alpha and beta spa-
tial orbitals are restricted to be identical. The quantum op-
timization routines were that of OpenFermion-Cirq and we
only modify the initial state routines and the input molecular
data50. The data that support the findings of this study are
available from the authors upon reasonable request.

A. Landscape analysis

We consider H2, H+
3 as minimal basis model systems whose

Hartree-Fock instances we can completely characterize. We

begin with the H2 example.

When considering H2 in the minimal basis with there is
only a single orbital mixing parameter. In fig. 2, we have
plotted the 1D HES surface as a function of bond length for
H2. The number of minimums in HES(q ) changes with bond
length. Before a bond length of approximately 1.2 Å, there is
only a single minimum. But at larger bond lengths an addi-
tional minimum begins to appear.
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FIG. 2: H2 HES(q ; rHH). Each fixed value of the nuclear
separation, rHH, generates a Hartree-Fock instance

characterized by a single the orbital rotation parameter, q .
Notice the appearance of a second HES minimum at a higher

energy around r ⇡ 1.2 Å.

We continue with our two electron examples with the iso-
electronic H+

3 . Now, instead of a 1D HES, we now have two
parameters that mix the one occupied orbital with the two vir-
tual orbitals. We plot the HES in fig. 3 for a linear configura-
tion with hydrogen atoms separated by 2.5 Å. There are three
minimums for HES(q1,q2). In fig. 4 we give the HES of H+

3
at 4.36 Å where there are several minimums with the same
globally optimal value.

FIG. 3: H+
3 HES(q1,q2), showing three different minimums

(global minimum - �, second minimum - N and third
minimum - ⇥ ) at rHH = 2.5 Å. Here the surface is expanded

about P0 = Pcore.

In both the case of H+
3 and H2, there is a single occupied

(spatial) orbital occupied and m virtual orbitals. For m = 2,

HF-QC 4

FIG. 4: The H+
3 HES(q1,q2) surface for fixed bond length at

rHH = 4.36 Å. Here the surface is expanded about P0 = Pcore.

this leads to an Ablock generator of the form

Ablock =

2

4
0 �q1 �q2
q1 0 0
q2 0 0

3

5 (12)

The eigenvalues of this matrix are l± = {0,±i

q
q 2

1 +q 2
2 }.

Since the matrix exponential of Ablock merely exponentiates
the eigenvalues, when l± = ip , the rotation acts trivially on
the density matrix. This underlies periodicity to the plots seen
in 3 and 4.

We can explain the periodicity in terms of this invari-
ant by converting to polar coordinates where q1 = Rcosf
and q2 = Rsinf . Now the nontrivial eigenvalue is l± =
±iR and we can express the periodicity of the plots as
HES(q1,q2)=HES(R,f) =HES(R+np,f) with n an integer.

There is a nice generalization of this fact. For a single spa-
tial orbital that is doubly occupied with two electrons and m

virtual orbitals, the generalization of eq. (12) is

Ablock =

2

6666664

0 �q1 �q2 �q3 . . . �qm

q1 0 0 0 . . . 0
q2 0 0 0 . . . 0
q3 0 0 0 . . . 0
...

...
...

...
. . .

...
qm 0 0 0 . . . 0

3

7777775
(13)

It is straightforward to calculate that the eigenvalues of this
matrix are zero except l± = ±i

q
q 2

1 +q 2
2 +q 2

3 + ...+q 2
m

.
Following the same argument as in the m = 2 case above, we
can say that

HES(Q) = HES(R,F) = HES(R+np,F) (14)

where R =
q

q 2
1 + ...+q 2

m
.

Therefore, the range of the minimal required search space
for each q j is restricted to a hyper-sphere with radius p of di-
mension m. But, the default search space was a hyper cube
of dimension m with side 2p . Now, the ratio of minimal re-
quired search space with default search goes to zero as m tends
to infinity. This is a well known consequence of the vanish-
ing ratio of the volume of a hyper-sphere to the volume of the
corresponding hyper-cube51,52.

B. Convergence analysis

We used the quantum algorithm outlined in ref.40 for ob-
taining RHF solutions for four examples. Depending on initial
guess it may converge to local rather global solutions.

The different initial guess were generated using the Givens
rotations corresponding to different minimums in figs. 2 and 3,
respectively. The results for H2, converging to two different
minimums on quantum simulator is shown in fig. 5. Simi-
larly results for H+

3 , converging to two different minimums on
quantum simulator is shown in fig. 6. In fig. 5, the values of
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FIG. 5: Convergence of the HF quantum optimization to
different minimums for the Hartree-Fock instance of H2 at
rHH = 1.5 Å in a minimal basis. Depicted are two initial

conditions obtained by adding a offsets of differing strengths,
l , to the global ground state. The value used in the

Open-Fermion implementation was l = 0.1.

l = 1 and l = 1.2 were chosen as states far enough in param-
eter space to have energy sufficiently large. If we select states
with small l , the convergence to the minimum is highly likely
so long as the system does not climb uphill in energy since
the initial state has energy less than all minimums except the
global minimum.

-0.8

-0.7

-0.6

-0.5

-0.4

 5  10  15  20  25  30  35  40

E
n

e
rg

y
(a

.u
.)

Iterations

global minimum
local minimum

λ = 0.3
λ = 0.6
λ = 0.7
λ = 1.0

FIG. 6: Convergence of the HF quantum optimization to
different minimums for the Hartree-Fock instance of H+

3 at
rHH = 2.5 Å in a minimal basis. Depicted are two initial

conditions obtained by adding a offsets of differing strengths,
l , to the global ground state.

As final examples, we choose diatomic carbon and its
cation. We also consider C2 and C2+

2 as instances that are
commonly known to confound solvers due to the appearance
of saddle points with in the optimization landscape. To illus-
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energies, we optimized the structures of the neutral precursors by
EOM-IP-CCSD/cc-pVTZ. The electronic structure calculations
reported here were performed using the Q-Chem package.82,83

3 Results
All cyanopolyyne anions considered in this work are linear
species with alternating single and triple bonds (Fig. 2). In the
ground state, they have a closed-shell electronic configuration of
1S+ symmetry. The molecular orbital analysis of the detached
and excited states studied here reveals two classes of orbitals
involved in the relevant electronic transitions.

The first class comprises the two sets of orthogonal and
degenerate p orbitals. The second class comprises a lone pair
located on the terminal carbon—this orbital is of s type. The p
system in the C2n!1N! anions is similar to the p system in
conjugated polyynes. Hence, one can employ the Hückel model
to interpret the trend in energies of the p orbitals with respect
to the carbon chain length. In accordance with the Hückel
model predictions, the energy of the frontier p orbitals
increases (lowering the respective detachment energy) and the
energy of p* orbitals decreases, as the length of the carbon
chain increases. This trend is illustrated in Fig. 3. In contrast,
the s orbital becomes more bound in longer carbon chains,
which can be rationalized in terms of the electrostatic inter-
action between the lone electron pair and the increasing dipole
moment of the neutral core.

The opposite trends in the energetics of the frontier occupied
orbitals (p and s) clearly manifest themselves in the computed
electron detachment energies. Table 1 presents the calculated
vertical detachment energies for the two lowest detached states
of 2S+ and 2P symmetry. A 2S+ radical is obtained by removing
an electron from the s orbital of the anion, whereas electron
detachment from p orbital leads to a 2P radical, as illustrated by
the shapes of the corresponding Dyson orbitals in Fig. 4.

As expected, the Dyson orbitals for the 2S+ states have axial
symmetry with highest electron density at the carbon end of the
chain. The Dyson orbitals for the 2P states have a typical nodal
structure of p orbitals and are delocalized over the entire chain,
following the Hückel model prediction (Fig. 3). Table 1 shows
that all anions have a large electron detachment energy: B4 eV
or more. Forming 2S+ radicals is more favorable in shorter
carbon chains, whereas 2P radicals become preferable in
longer species, which leads to the change of the ground state
from 2S+ to 2P as the carbon chain increases. Directly comparable
with experimental measurements are the adiabatic detachment
energies (ADE). Table 2 summarizes our calculated ADEs together
with the available experimental values.57,58,84 The discrepancies
between theory and experiment are within 0.2–0.3 eV, as expected
for EOM-CCSD. According to our calculations, the cross-over
between the 2S+ and 2P states occurs in C5N, both adiabatically
and vertically. The most recent photoelectron spectroscopic
study58 found that the ground state of C5N is still 2S+, whereas
the 2P state is located 0.069" 0.015 eV above the 2S+ threshold.

Fig. 2 Four cyanopolyyne anions studied in this work.

Fig. 3 Frontier molecular orbitals in cyanopolyyne anions.

Table 1 Vertical detachment energies (VDE) of the anions (in eV) and
dipole moments m (in debye) of the neutral radicals

Molecule VDE (2S+) m (2S+) VDE (2P) m (2P)

CN! 3.99 1.35 5.28 0.18
C3N! 4.67 3.87 4.79 0.14
C5N! 4.98 5.86 4.70 0.11
C7N! 5.22 7.97 4.71 0.03

Fig. 4 Dyson orbitals of cyanopolyyne anions corresponding to the
formation of the 2S+ (left) or 2P (right) neutral radicals.
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3 Computational details
As explained above, we describe the electronic states of C2

! and C2 using EOM-IP-
CCSD and EOM-DIP-CCSD, respectively, using the dianionic reference (see Fig. 2).
In real-valued EOM-CCSD calculations, we used the aug-cc-pVTZ basis. In the
CAP-augmented CCSD and EOM-IP-CCSD calculations, we used the aug-cc-
pVTZ+3s3p and aug-cc-pCVTZ+6s6p6d basis sets (the exponents of the additional
diffuse sets were generated using the same protocol as in our previous
studies54,81). Two core orbitals, s1s and s*

1s, were frozen in correlated calculations
except when employing the aug-cc-pCVTZ basis. In the calculations using aug-cc-
pVTZ+3s3p, the CAP onset was set according to the expectation value of R2 of the
triplet UHF wave function of C2 (at rCC ¼ 1.28 Å, the onsets were: x0 ¼ y0 ¼ 1.6 Å,
z0 ¼ 2.6 Å). In the calculations with aug-cc-pCVTZ+6s6p6d, the CAP onset was set
according to the expectation value of R2 of the dianion computed using CCSD/
aug-cc-pCVTZ (at rCC ¼ 1.2761 Å, this gave x0 ¼ y0 ¼ 2.4 Å, z0 ¼ 3.6 Å). A rst-
order correction53 was applied to the computed total energy and then optimal
values of h were determined from these corrected trajectories using our standard
protocol.53,54 All electronic structure calculations were carried out using the Q-
Chem package.83,84 The calculations of partial widths were carried out using
ezDyson.85

4 Results and discussion
4.1 C2

Fig. 3 shows the potential energy curves of the low-lying singlet and triplet states
of C2 computed using EOM-DIP-CCSD/aug-cc-pVTZ. The respective electronic
congurations, equilibrium distances, and term values are summarized in
Table 1, which also presents MR-CISD+Q/cc-pVTZ results from ref. 34 and the
experimental values. As one can see, C2 features 10 electronic states within
#24 000 cm!1 (about 3 eV).

Fig. 3 Potential energy curves of the low-lying singlet and triplet states of C2.
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triples cancels out for the DBS, because the unpaired electron does
not participate in the bonding.

Because of their structural similarity, we also expect the
vibrational frequencies of the neutral and DBS to be similar,
giving rise to DZPE E 0. ZPEs of the neutral and the VA states
were computed within the harmonic approximation with CCSD
and EOM-EA-CCSD using aug-cc-pVDZ and resolution-of-the-
identity (RI) approximation50,51 with the matching basis set
(ri-aug-cc-pVDZ), at the geometries optimized at the same level
of theory. The computed structures and normal modes were
used to compute the Franck–Condon factors within parallel-
mode double-harmonic approximation using the ezSpectrum
software;52 these calculations used T = 300 K. To further
elucidate putative contributions of the DBS to the spectra, we
computed photoelectron cross sections using EOM-EA-CCSD
Dyson orbitals and the ezDyson software.53

To correctly describe DBS, large basis sets with additional
sets of diffuse functions are needed. We used the aug-cc-pVTZ
basis augmented with several extra sets of diffuse functions
added to each atom, with the exponents obtained following the
same procedure as in our previous studies;23,54–57 the details
are provided in the ESI.† Our preliminary calculations monitor-
ing the convergence of the VAE of the DBS showed that the
results converge with the aug-cc-pVTZ+6s3p(3s) basis. Here,
‘‘6s3p’’ refers to the additional diffuse functions placed at the
heavy atoms and ‘‘(3s)’’ to those placed at the hydrogen atoms.
Below we report the energetics of the bare benzonitrile anion
obtained with aug-cc-pVTZ+6s3p(3s). For the C6H5CN!"H2O
complex, the VAE of the DBS converged with the aug-cc-
pVTZ+4s4p(4s) basis. Thus, for the benzonitrile–water complex,
we report energetics obtained with aug-cc-pVTZ+4s4p(4s).

All electronic structure calculations were performed using
the Q-Chem package.58,59 Below we report symmetry labels
using Mulliken’s convention.60 Basis sets, relevant Cartesian
coordinates, and vibrational frequencies are given in the ESI.†

4 Results and discussion
4.1 Benzonitrile anions

Fig. 2 shows Dyson orbitals of the two lowest states of the
benzonitrile anion, 2A1 and 2B1. The shape of the orbitals
identifies the former as DBS and the latter as VA. In the VA
state, the unpaired electron resides on a relatively compact
p*-like orbital of b1 symmetry, giving rise to the 2B1 state. The
Dyson orbital for the DBS is a diffuse s-like orbital located on
the opposite end of the cyano-group, giving rise to the 2A1 state.
The DBS is supported by the large dipole moment of benzonitrile,
4.57 Debye (CCSD/aug-cc-pVTZ).

Fig. 4 shows the schematic energy diagram of the neutral
benzonitrile and the two anionic states. The energies shown in
the figure are our best estimates of AEAs (EOM-EA-CCSD/CCSD
with triples corrections, plus ZPE); the contributions of
different components are given in Table 1. The present EOM-
EA-CCSD calculations reveal that at the neutral’s equilibrium
geometry (RN), the VA state is electronically unbound, and the

only bound anionic state is the DBS, with the VEA of 0.024 eV.
This finding is consistent with the corresponding results of
Adamowicz and co-workers,25 who reported the VDE of the DBS
to be 0.019 eV with CCSD(T). However, at the optimized
geometry of the valence anion, both the DBS and VA are
(vertically) bound by 0.026 eV and 0.064 eV, respectively. The
latter value is in excellent agreement with the experimental VDE
of 0.058(5) eV, previously assigned to the VA.24 We note that
this value is a significant improvement over the corresponding
EOM-IP-CCSD value of 0.047 eV, which was obtained using
a less balanced protocol based on the open-shell anionic
reference and a smaller basis set.24

Considering only the electronic energies (computed with
EOM-EA-CCSD), the DBS minimum is 0.139 eV below the
minimum of the VA and the VA is adiabatically unbound (as
indicated by the negative AEAee). However, the ZPE correction
makes the VA adiabatically bound by 0.011 eV. A relatively large
effect of DZPE (0.126 eV) favoring the VA can easily be rationa-
lized by the shapes of the respective Dyson orbitals (Fig. 3):
because the electron is attached to the p* orbital, the vibra-
tional modes of the anion become softer, thus lowering the
magnitude of ZPE relative to the neutral. The mode that is most
affected by electron attachment is the butterfly mode. The
frequency of this mode softens by B170 cm!1 upon electron
attachment, which is clearly illustrated in Fig. 5 by the
reduction of the curvature of the potential energy profile. The
frequencies are given in Table S1 in the ESI.†

The inclusion of perturbative triple excitations increases
the attachment energy of the VA by 0.068 eV. Thus, the VA is

Table 1 Attachment and detachment energies (in eV) for valence (2B1)
and dipole-bound (2A1) anions of benzonitrile

State VAEa VDEa AEAee
a DZPEb D(T)c AEAd

2A1 !0.0240 0.0240 0.0240 B0 B0 0.024
2B1 NBe 0.0639 !0.1150 0.1256 0.0677 0.078

a EOM-EA-CCSD/aug-cc-pVTZ+6s3p(3s). b RI-CCSD/RI-EOM-EA-CCSD
and aug-cc-pVDZ for the VA. c EOM-EA-CCSD(T)(a)*/aug-cc-pVTZ for the
VA. d AEA including DZPE and triples’ correction. e Electronically not
bound.

Fig. 3 Dyson orbitals for the two lowest electronic states of the
benzonitrile anion, 2A1 and 2B1, computed at the respective optimized
geometries. Isovalue 0.007.
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FIG. 1: Quantum circuit for the two fermion and three
molecular orbital (for example H+

3 in STO-3G basis).

The Givens rotations provide a useful canonical characteri-
zation of an arbitrary orthogonal matrix, W . The QR decom-
position of a real n⇥n orthogonal matrix W can be done using
T = n(n�1)/2 Givens rotations such that

W = G1G2G4...GT D (11)

When W has determinant of one, D is just the identity matrix.
Each Givens rotation, Gi, is of the form Gi = g(a,b,q) with
gkk = 1 unless k is either a or b when instead gkk = cos(q). All
off-diagonal elements are zero except gab =�gba =�sin(q).

Applications of the Givens decomposition to fermionic or-
bital rotations has been worked out elsewhere44,46 resulting in
a quantum circuit that is able to prepare arbitrary Slater deter-
minants following the parameters of the QR decomposition.
By ordering the QR decomposition appropriately, a fermionic
swap network can be used to rotate each pair of orbitals us-
ing the appropriate Givens rotation parameters. This results
in an efficient state preparation circuit of the form depicted in
fig. 1. The full compilation down to gates including hardware
optimization is given elsewhere40,47.

Our characterization of the fermionic space in eq. (7) gives
us a set of parameters, Q that also characterizes the mixing
between pairs of orbitals. The resulting orthogonal transfor-
mation W (Q) is then given to the QR decomposition and for-
warded to the quantum circuit construction.

III. CALCULATIONS AND RESULTS

All calculations of the molecular system are done in the
STO-3G basis42. Energies are reported in Hartrees, angles of
rotation in radians, and bond lengths in Angstroms.

The Hartree-Fock energy surfaces (HES) were computed
using PySCF48,49. In this paper we only consider Restricted
Hartree-Fock (RHF) solutions where the alpha and beta spa-
tial orbitals are restricted to be identical. The quantum op-
timization routines were that of OpenFermion-Cirq and we
only modify the initial state routines and the input molecular
data50. The data that support the findings of this study are
available from the authors upon reasonable request.

A. Landscape analysis

We consider H2, H+
3 as minimal basis model systems whose

Hartree-Fock instances we can completely characterize. We

begin with the H2 example.

When considering H2 in the minimal basis with there is
only a single orbital mixing parameter. In fig. 2, we have
plotted the 1D HES surface as a function of bond length for
H2. The number of minimums in HES(q ) changes with bond
length. Before a bond length of approximately 1.2 Å, there is
only a single minimum. But at larger bond lengths an addi-
tional minimum begins to appear.
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FIG. 2: H2 HES(q ; rHH). Each fixed value of the nuclear
separation, rHH, generates a Hartree-Fock instance

characterized by a single the orbital rotation parameter, q .
Notice the appearance of a second HES minimum at a higher

energy around r ⇡ 1.2 Å.

We continue with our two electron examples with the iso-
electronic H+

3 . Now, instead of a 1D HES, we now have two
parameters that mix the one occupied orbital with the two vir-
tual orbitals. We plot the HES in fig. 3 for a linear configura-
tion with hydrogen atoms separated by 2.5 Å. There are three
minimums for HES(q1,q2). In fig. 4 we give the HES of H+

3
at 4.36 Å where there are several minimums with the same
globally optimal value.

FIG. 3: H+
3 HES(q1,q2), showing three different minimums

(global minimum - �, second minimum - N and third
minimum - ⇥ ) at rHH = 2.5 Å. Here the surface is expanded

about P0 = Pcore.

In both the case of H+
3 and H2, there is a single occupied

(spatial) orbital occupied and m virtual orbitals. For m = 2,

HF-QC 4

FIG. 4: The H+
3 HES(q1,q2) surface for fixed bond length at

rHH = 4.36 Å. Here the surface is expanded about P0 = Pcore.

this leads to an Ablock generator of the form

Ablock =

2

4
0 �q1 �q2
q1 0 0
q2 0 0

3

5 (12)

The eigenvalues of this matrix are l± = {0,±i

q
q 2

1 +q 2
2 }.

Since the matrix exponential of Ablock merely exponentiates
the eigenvalues, when l± = ip , the rotation acts trivially on
the density matrix. This underlies periodicity to the plots seen
in 3 and 4.

We can explain the periodicity in terms of this invari-
ant by converting to polar coordinates where q1 = Rcosf
and q2 = Rsinf . Now the nontrivial eigenvalue is l± =
±iR and we can express the periodicity of the plots as
HES(q1,q2)=HES(R,f) =HES(R+np,f) with n an integer.

There is a nice generalization of this fact. For a single spa-
tial orbital that is doubly occupied with two electrons and m

virtual orbitals, the generalization of eq. (12) is

Ablock =

2

6666664

0 �q1 �q2 �q3 . . . �qm

q1 0 0 0 . . . 0
q2 0 0 0 . . . 0
q3 0 0 0 . . . 0
...

...
...

...
. . .

...
qm 0 0 0 . . . 0

3

7777775
(13)

It is straightforward to calculate that the eigenvalues of this
matrix are zero except l± = ±i

q
q 2

1 +q 2
2 +q 2

3 + ...+q 2
m

.
Following the same argument as in the m = 2 case above, we
can say that

HES(Q) = HES(R,F) = HES(R+np,F) (14)

where R =
q

q 2
1 + ...+q 2

m
.

Therefore, the range of the minimal required search space
for each q j is restricted to a hyper-sphere with radius p of di-
mension m. But, the default search space was a hyper cube
of dimension m with side 2p . Now, the ratio of minimal re-
quired search space with default search goes to zero as m tends
to infinity. This is a well known consequence of the vanish-
ing ratio of the volume of a hyper-sphere to the volume of the
corresponding hyper-cube51,52.

B. Convergence analysis

We used the quantum algorithm outlined in ref.40 for ob-
taining RHF solutions for four examples. Depending on initial
guess it may converge to local rather global solutions.

The different initial guess were generated using the Givens
rotations corresponding to different minimums in figs. 2 and 3,
respectively. The results for H2, converging to two different
minimums on quantum simulator is shown in fig. 5. Simi-
larly results for H+

3 , converging to two different minimums on
quantum simulator is shown in fig. 6. In fig. 5, the values of
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FIG. 5: Convergence of the HF quantum optimization to
different minimums for the Hartree-Fock instance of H2 at
rHH = 1.5 Å in a minimal basis. Depicted are two initial

conditions obtained by adding a offsets of differing strengths,
l , to the global ground state. The value used in the

Open-Fermion implementation was l = 0.1.

l = 1 and l = 1.2 were chosen as states far enough in param-
eter space to have energy sufficiently large. If we select states
with small l , the convergence to the minimum is highly likely
so long as the system does not climb uphill in energy since
the initial state has energy less than all minimums except the
global minimum.
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As final examples, we choose diatomic carbon and its
cation. We also consider C2 and C2+

2 as instances that are
commonly known to confound solvers due to the appearance
of saddle points with in the optimization landscape. To illus-
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energies, we optimized the structures of the neutral precursors by
EOM-IP-CCSD/cc-pVTZ. The electronic structure calculations
reported here were performed using the Q-Chem package.82,83

3 Results
All cyanopolyyne anions considered in this work are linear
species with alternating single and triple bonds (Fig. 2). In the
ground state, they have a closed-shell electronic configuration of
1S+ symmetry. The molecular orbital analysis of the detached
and excited states studied here reveals two classes of orbitals
involved in the relevant electronic transitions.

The first class comprises the two sets of orthogonal and
degenerate p orbitals. The second class comprises a lone pair
located on the terminal carbon—this orbital is of s type. The p
system in the C2n!1N! anions is similar to the p system in
conjugated polyynes. Hence, one can employ the Hückel model
to interpret the trend in energies of the p orbitals with respect
to the carbon chain length. In accordance with the Hückel
model predictions, the energy of the frontier p orbitals
increases (lowering the respective detachment energy) and the
energy of p* orbitals decreases, as the length of the carbon
chain increases. This trend is illustrated in Fig. 3. In contrast,
the s orbital becomes more bound in longer carbon chains,
which can be rationalized in terms of the electrostatic inter-
action between the lone electron pair and the increasing dipole
moment of the neutral core.

The opposite trends in the energetics of the frontier occupied
orbitals (p and s) clearly manifest themselves in the computed
electron detachment energies. Table 1 presents the calculated
vertical detachment energies for the two lowest detached states
of 2S+ and 2P symmetry. A 2S+ radical is obtained by removing
an electron from the s orbital of the anion, whereas electron
detachment from p orbital leads to a 2P radical, as illustrated by
the shapes of the corresponding Dyson orbitals in Fig. 4.

As expected, the Dyson orbitals for the 2S+ states have axial
symmetry with highest electron density at the carbon end of the
chain. The Dyson orbitals for the 2P states have a typical nodal
structure of p orbitals and are delocalized over the entire chain,
following the Hückel model prediction (Fig. 3). Table 1 shows
that all anions have a large electron detachment energy: B4 eV
or more. Forming 2S+ radicals is more favorable in shorter
carbon chains, whereas 2P radicals become preferable in
longer species, which leads to the change of the ground state
from 2S+ to 2P as the carbon chain increases. Directly comparable
with experimental measurements are the adiabatic detachment
energies (ADE). Table 2 summarizes our calculated ADEs together
with the available experimental values.57,58,84 The discrepancies
between theory and experiment are within 0.2–0.3 eV, as expected
for EOM-CCSD. According to our calculations, the cross-over
between the 2S+ and 2P states occurs in C5N, both adiabatically
and vertically. The most recent photoelectron spectroscopic
study58 found that the ground state of C5N is still 2S+, whereas
the 2P state is located 0.069" 0.015 eV above the 2S+ threshold.

Fig. 2 Four cyanopolyyne anions studied in this work.

Fig. 3 Frontier molecular orbitals in cyanopolyyne anions.

Table 1 Vertical detachment energies (VDE) of the anions (in eV) and
dipole moments m (in debye) of the neutral radicals

Molecule VDE (2S+) m (2S+) VDE (2P) m (2P)

CN! 3.99 1.35 5.28 0.18
C3N! 4.67 3.87 4.79 0.14
C5N! 4.98 5.86 4.70 0.11
C7N! 5.22 7.97 4.71 0.03

Fig. 4 Dyson orbitals of cyanopolyyne anions corresponding to the
formation of the 2S+ (left) or 2P (right) neutral radicals.
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3 Computational details
As explained above, we describe the electronic states of C2

! and C2 using EOM-IP-
CCSD and EOM-DIP-CCSD, respectively, using the dianionic reference (see Fig. 2).
In real-valued EOM-CCSD calculations, we used the aug-cc-pVTZ basis. In the
CAP-augmented CCSD and EOM-IP-CCSD calculations, we used the aug-cc-
pVTZ+3s3p and aug-cc-pCVTZ+6s6p6d basis sets (the exponents of the additional
diffuse sets were generated using the same protocol as in our previous
studies54,81). Two core orbitals, s1s and s*

1s, were frozen in correlated calculations
except when employing the aug-cc-pCVTZ basis. In the calculations using aug-cc-
pVTZ+3s3p, the CAP onset was set according to the expectation value of R2 of the
triplet UHF wave function of C2 (at rCC ¼ 1.28 Å, the onsets were: x0 ¼ y0 ¼ 1.6 Å,
z0 ¼ 2.6 Å). In the calculations with aug-cc-pCVTZ+6s6p6d, the CAP onset was set
according to the expectation value of R2 of the dianion computed using CCSD/
aug-cc-pCVTZ (at rCC ¼ 1.2761 Å, this gave x0 ¼ y0 ¼ 2.4 Å, z0 ¼ 3.6 Å). A rst-
order correction53 was applied to the computed total energy and then optimal
values of h were determined from these corrected trajectories using our standard
protocol.53,54 All electronic structure calculations were carried out using the Q-
Chem package.83,84 The calculations of partial widths were carried out using
ezDyson.85

4 Results and discussion
4.1 C2

Fig. 3 shows the potential energy curves of the low-lying singlet and triplet states
of C2 computed using EOM-DIP-CCSD/aug-cc-pVTZ. The respective electronic
congurations, equilibrium distances, and term values are summarized in
Table 1, which also presents MR-CISD+Q/cc-pVTZ results from ref. 34 and the
experimental values. As one can see, C2 features 10 electronic states within
#24 000 cm!1 (about 3 eV).

Fig. 3 Potential energy curves of the low-lying singlet and triplet states of C2.
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triples cancels out for the DBS, because the unpaired electron does
not participate in the bonding.

Because of their structural similarity, we also expect the
vibrational frequencies of the neutral and DBS to be similar,
giving rise to DZPE E 0. ZPEs of the neutral and the VA states
were computed within the harmonic approximation with CCSD
and EOM-EA-CCSD using aug-cc-pVDZ and resolution-of-the-
identity (RI) approximation50,51 with the matching basis set
(ri-aug-cc-pVDZ), at the geometries optimized at the same level
of theory. The computed structures and normal modes were
used to compute the Franck–Condon factors within parallel-
mode double-harmonic approximation using the ezSpectrum
software;52 these calculations used T = 300 K. To further
elucidate putative contributions of the DBS to the spectra, we
computed photoelectron cross sections using EOM-EA-CCSD
Dyson orbitals and the ezDyson software.53

To correctly describe DBS, large basis sets with additional
sets of diffuse functions are needed. We used the aug-cc-pVTZ
basis augmented with several extra sets of diffuse functions
added to each atom, with the exponents obtained following the
same procedure as in our previous studies;23,54–57 the details
are provided in the ESI.† Our preliminary calculations monitor-
ing the convergence of the VAE of the DBS showed that the
results converge with the aug-cc-pVTZ+6s3p(3s) basis. Here,
‘‘6s3p’’ refers to the additional diffuse functions placed at the
heavy atoms and ‘‘(3s)’’ to those placed at the hydrogen atoms.
Below we report the energetics of the bare benzonitrile anion
obtained with aug-cc-pVTZ+6s3p(3s). For the C6H5CN!"H2O
complex, the VAE of the DBS converged with the aug-cc-
pVTZ+4s4p(4s) basis. Thus, for the benzonitrile–water complex,
we report energetics obtained with aug-cc-pVTZ+4s4p(4s).

All electronic structure calculations were performed using
the Q-Chem package.58,59 Below we report symmetry labels
using Mulliken’s convention.60 Basis sets, relevant Cartesian
coordinates, and vibrational frequencies are given in the ESI.†

4 Results and discussion
4.1 Benzonitrile anions

Fig. 2 shows Dyson orbitals of the two lowest states of the
benzonitrile anion, 2A1 and 2B1. The shape of the orbitals
identifies the former as DBS and the latter as VA. In the VA
state, the unpaired electron resides on a relatively compact
p*-like orbital of b1 symmetry, giving rise to the 2B1 state. The
Dyson orbital for the DBS is a diffuse s-like orbital located on
the opposite end of the cyano-group, giving rise to the 2A1 state.
The DBS is supported by the large dipole moment of benzonitrile,
4.57 Debye (CCSD/aug-cc-pVTZ).

Fig. 4 shows the schematic energy diagram of the neutral
benzonitrile and the two anionic states. The energies shown in
the figure are our best estimates of AEAs (EOM-EA-CCSD/CCSD
with triples corrections, plus ZPE); the contributions of
different components are given in Table 1. The present EOM-
EA-CCSD calculations reveal that at the neutral’s equilibrium
geometry (RN), the VA state is electronically unbound, and the

only bound anionic state is the DBS, with the VEA of 0.024 eV.
This finding is consistent with the corresponding results of
Adamowicz and co-workers,25 who reported the VDE of the DBS
to be 0.019 eV with CCSD(T). However, at the optimized
geometry of the valence anion, both the DBS and VA are
(vertically) bound by 0.026 eV and 0.064 eV, respectively. The
latter value is in excellent agreement with the experimental VDE
of 0.058(5) eV, previously assigned to the VA.24 We note that
this value is a significant improvement over the corresponding
EOM-IP-CCSD value of 0.047 eV, which was obtained using
a less balanced protocol based on the open-shell anionic
reference and a smaller basis set.24

Considering only the electronic energies (computed with
EOM-EA-CCSD), the DBS minimum is 0.139 eV below the
minimum of the VA and the VA is adiabatically unbound (as
indicated by the negative AEAee). However, the ZPE correction
makes the VA adiabatically bound by 0.011 eV. A relatively large
effect of DZPE (0.126 eV) favoring the VA can easily be rationa-
lized by the shapes of the respective Dyson orbitals (Fig. 3):
because the electron is attached to the p* orbital, the vibra-
tional modes of the anion become softer, thus lowering the
magnitude of ZPE relative to the neutral. The mode that is most
affected by electron attachment is the butterfly mode. The
frequency of this mode softens by B170 cm!1 upon electron
attachment, which is clearly illustrated in Fig. 5 by the
reduction of the curvature of the potential energy profile. The
frequencies are given in Table S1 in the ESI.†

The inclusion of perturbative triple excitations increases
the attachment energy of the VA by 0.068 eV. Thus, the VA is

Table 1 Attachment and detachment energies (in eV) for valence (2B1)
and dipole-bound (2A1) anions of benzonitrile

State VAEa VDEa AEAee
a DZPEb D(T)c AEAd

2A1 !0.0240 0.0240 0.0240 B0 B0 0.024
2B1 NBe 0.0639 !0.1150 0.1256 0.0677 0.078

a EOM-EA-CCSD/aug-cc-pVTZ+6s3p(3s). b RI-CCSD/RI-EOM-EA-CCSD
and aug-cc-pVDZ for the VA. c EOM-EA-CCSD(T)(a)*/aug-cc-pVTZ for the
VA. d AEA including DZPE and triples’ correction. e Electronically not
bound.

Fig. 3 Dyson orbitals for the two lowest electronic states of the
benzonitrile anion, 2A1 and 2B1, computed at the respective optimized
geometries. Isovalue 0.007.
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FIG. 1: Quantum circuit for the two fermion and three
molecular orbital (for example H+

3 in STO-3G basis).

The Givens rotations provide a useful canonical characteri-
zation of an arbitrary orthogonal matrix, W . The QR decom-
position of a real n⇥n orthogonal matrix W can be done using
T = n(n�1)/2 Givens rotations such that

W = G1G2G4...GT D (11)

When W has determinant of one, D is just the identity matrix.
Each Givens rotation, Gi, is of the form Gi = g(a,b,q) with
gkk = 1 unless k is either a or b when instead gkk = cos(q). All
off-diagonal elements are zero except gab =�gba =�sin(q).

Applications of the Givens decomposition to fermionic or-
bital rotations has been worked out elsewhere44,46 resulting in
a quantum circuit that is able to prepare arbitrary Slater deter-
minants following the parameters of the QR decomposition.
By ordering the QR decomposition appropriately, a fermionic
swap network can be used to rotate each pair of orbitals us-
ing the appropriate Givens rotation parameters. This results
in an efficient state preparation circuit of the form depicted in
fig. 1. The full compilation down to gates including hardware
optimization is given elsewhere40,47.

Our characterization of the fermionic space in eq. (7) gives
us a set of parameters, Q that also characterizes the mixing
between pairs of orbitals. The resulting orthogonal transfor-
mation W (Q) is then given to the QR decomposition and for-
warded to the quantum circuit construction.

III. CALCULATIONS AND RESULTS

All calculations of the molecular system are done in the
STO-3G basis42. Energies are reported in Hartrees, angles of
rotation in radians, and bond lengths in Angstroms.

The Hartree-Fock energy surfaces (HES) were computed
using PySCF48,49. In this paper we only consider Restricted
Hartree-Fock (RHF) solutions where the alpha and beta spa-
tial orbitals are restricted to be identical. The quantum op-
timization routines were that of OpenFermion-Cirq and we
only modify the initial state routines and the input molecular
data50. The data that support the findings of this study are
available from the authors upon reasonable request.

A. Landscape analysis

We consider H2, H+
3 as minimal basis model systems whose

Hartree-Fock instances we can completely characterize. We

begin with the H2 example.

When considering H2 in the minimal basis with there is
only a single orbital mixing parameter. In fig. 2, we have
plotted the 1D HES surface as a function of bond length for
H2. The number of minimums in HES(q ) changes with bond
length. Before a bond length of approximately 1.2 Å, there is
only a single minimum. But at larger bond lengths an addi-
tional minimum begins to appear.
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FIG. 2: H2 HES(q ; rHH). Each fixed value of the nuclear
separation, rHH, generates a Hartree-Fock instance

characterized by a single the orbital rotation parameter, q .
Notice the appearance of a second HES minimum at a higher

energy around r ⇡ 1.2 Å.

We continue with our two electron examples with the iso-
electronic H+

3 . Now, instead of a 1D HES, we now have two
parameters that mix the one occupied orbital with the two vir-
tual orbitals. We plot the HES in fig. 3 for a linear configura-
tion with hydrogen atoms separated by 2.5 Å. There are three
minimums for HES(q1,q2). In fig. 4 we give the HES of H+

3
at 4.36 Å where there are several minimums with the same
globally optimal value.

FIG. 3: H+
3 HES(q1,q2), showing three different minimums

(global minimum - �, second minimum - N and third
minimum - ⇥ ) at rHH = 2.5 Å. Here the surface is expanded

about P0 = Pcore.

In both the case of H+
3 and H2, there is a single occupied

(spatial) orbital occupied and m virtual orbitals. For m = 2,

HF-QC 4

FIG. 4: The H+
3 HES(q1,q2) surface for fixed bond length at

rHH = 4.36 Å. Here the surface is expanded about P0 = Pcore.

this leads to an Ablock generator of the form

Ablock =

2

4
0 �q1 �q2
q1 0 0
q2 0 0

3

5 (12)

The eigenvalues of this matrix are l± = {0,±i

q
q 2

1 +q 2
2 }.

Since the matrix exponential of Ablock merely exponentiates
the eigenvalues, when l± = ip , the rotation acts trivially on
the density matrix. This underlies periodicity to the plots seen
in 3 and 4.

We can explain the periodicity in terms of this invari-
ant by converting to polar coordinates where q1 = Rcosf
and q2 = Rsinf . Now the nontrivial eigenvalue is l± =
±iR and we can express the periodicity of the plots as
HES(q1,q2)=HES(R,f) =HES(R+np,f) with n an integer.

There is a nice generalization of this fact. For a single spa-
tial orbital that is doubly occupied with two electrons and m

virtual orbitals, the generalization of eq. (12) is

Ablock =

2

6666664

0 �q1 �q2 �q3 . . . �qm

q1 0 0 0 . . . 0
q2 0 0 0 . . . 0
q3 0 0 0 . . . 0
...

...
...

...
. . .

...
qm 0 0 0 . . . 0

3

7777775
(13)

It is straightforward to calculate that the eigenvalues of this
matrix are zero except l± = ±i

q
q 2

1 +q 2
2 +q 2

3 + ...+q 2
m

.
Following the same argument as in the m = 2 case above, we
can say that

HES(Q) = HES(R,F) = HES(R+np,F) (14)

where R =
q

q 2
1 + ...+q 2

m
.

Therefore, the range of the minimal required search space
for each q j is restricted to a hyper-sphere with radius p of di-
mension m. But, the default search space was a hyper cube
of dimension m with side 2p . Now, the ratio of minimal re-
quired search space with default search goes to zero as m tends
to infinity. This is a well known consequence of the vanish-
ing ratio of the volume of a hyper-sphere to the volume of the
corresponding hyper-cube51,52.

B. Convergence analysis

We used the quantum algorithm outlined in ref.40 for ob-
taining RHF solutions for four examples. Depending on initial
guess it may converge to local rather global solutions.

The different initial guess were generated using the Givens
rotations corresponding to different minimums in figs. 2 and 3,
respectively. The results for H2, converging to two different
minimums on quantum simulator is shown in fig. 5. Simi-
larly results for H+

3 , converging to two different minimums on
quantum simulator is shown in fig. 6. In fig. 5, the values of
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FIG. 5: Convergence of the HF quantum optimization to
different minimums for the Hartree-Fock instance of H2 at
rHH = 1.5 Å in a minimal basis. Depicted are two initial

conditions obtained by adding a offsets of differing strengths,
l , to the global ground state. The value used in the

Open-Fermion implementation was l = 0.1.

l = 1 and l = 1.2 were chosen as states far enough in param-
eter space to have energy sufficiently large. If we select states
with small l , the convergence to the minimum is highly likely
so long as the system does not climb uphill in energy since
the initial state has energy less than all minimums except the
global minimum.
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FIG. 6: Convergence of the HF quantum optimization to
different minimums for the Hartree-Fock instance of H+

3 at
rHH = 2.5 Å in a minimal basis. Depicted are two initial

conditions obtained by adding a offsets of differing strengths,
l , to the global ground state.

As final examples, we choose diatomic carbon and its
cation. We also consider C2 and C2+

2 as instances that are
commonly known to confound solvers due to the appearance
of saddle points with in the optimization landscape. To illus-
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Fig. 1. Process overview of simulating Heisenberg spin Hamiltonians on digital quantum computers and quantum simulators.

• generate_circuits: From the input file, this method
uses the user-specified Hamiltonian parameters, as
well as user choices regarding backend and compila-
tion. First, it generates intermediate quantum circuits
needed to simulate the time-evolution of the system,
then it compiles these circuits into the native gate sets
and syntax of the user-specified quantum computing
backend.

• connect_ibm: For IBM use cases, this method connects
to the IBMQ backend (needed for quantum circuit com-
pilation and execution). Takes in IBMQ API key and
account overwrite boolean as needed.

• run_circuits: From the input file, this method uses
the backend and quantum device choice, as well as
user choices regarding post-processing of results. Its
functionality is to execute the quantum circuits on the
user-specified quantum device and post-process the
results to the user’s specifications.

• ds_compiler: Code for domain-specific compilation of cir-
cuits for the TFIM (which is a special case of the general
Hamiltonian in Eq. (1)) into the native gate sets employed
by IBM and Rigetti.

• ds_compile_ibm: Domain-specific quantum compiler
for circuits simulating time-evolution of the TFIM.
Takes in a high-level quantum circuit and returns a
compiled quantum circuit executable on IBM quantum
computers.

• ds_compile_rigetti: Domain-specific quantum com-
piler for circuits simulating time-evolution of the TFIM.
Takes in a high-level quantum circuit and returns a
compiled quantum circuit executable on Rigetti quan-
tum computers.

The described roles and key member functions of these modules
are illustrated in Fig. 2b. In this figure, information inlets and
outlet paths are also highlighted, and the optional compiler-only
use case is included in the context of the nominal workflow.

This multi-output architecture allows MISTIQS to serve a vari-
ety of education-facing and research-facing applications; utilizing
the full feature stack allows for streamlined visualizations of key

observable evolutions under the Hamiltonian of interest, while
the ability to output the generated simulation circuits allows
for researchers to utilize their own compilers or transform cir-
cuits into the syntax appropriate for alternate quantum hardware
backends.

2.2. Prerequisites

The MISTIQS codebase was intentionally written to minimize
the number of required external libraries; it only requires the
numpy library to be installed. If the user would like to generate
plots of the simulation results, then the matplotlib library must be
installed as well. Otherwise, any additional required libraries are
solely dependent on the quantum-computing platform the user
would like to produce quantum circuits for; qiskit [16] is required
to generate circuits for IBM devices, pyquil [17,18] is required for
Rigetti use cases, and cirq [11] is likewise required for Google use
cases.

2.3. Generalized workflow

To use MISTIQS, the user must first define any parameters that
need to be changed from their default values in a simple text-
based input file. The customizable parameters are described in
the appendix. A Heisenberg object is then created, which stores
all of the input system parameters. Note that while attributes of
the object are initially set from the input file, they can be changed
later in the code as any time. Next, the software transforms the
input Hamiltonian and simulation parameters into a series of
quantum programs (an intermediate representation of quantum
circuits) that will simulate the dynamics of the system of interest
via Trotter approximation. This intermediate circuit represen-
tation (native to MISTIQS) facilitates the transformation of the
quantum circuits into the equivalent native circuits for various
quantum computing platforms. This is crucial because quantum
computing platforms can vary widely in not only in circuit object
syntax, but also the native quantum gate set allowed on their
hardware.

MISTIQS then compiles the circuits, if desired, using either the
compilers native to the specified quantum computing platform

3
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Table 1. Algebraic identities for gate sets commonly found in TFIM circuits.

No. Common Gate Set in TFIM Circuits Equivalent

1 RX(✓) H RZ(✓) H

2 H RZ(⇡2 ) RX(⇡2 ) RZ(⇡2 )

3 • Z

H • H
4 • H H

H • H

5 RX(✓i) RZ(⇡) RZ(�⇡) RX(�✓i)

6 Z Z RX(�⇡
2 )

• RX(⇡2 ) RZ(✓i) RX(�⇡
2 ) • RX(⇡2 )

RX(�⇡
2 ) Z RX(⇡2 ) RZ(✓i) RX(�⇡

2 ) Z

RX(⇡2 ) • •

7 H H

8 RX(✓i) RX(✓j) RX(✓i + ✓j)

9 RZ(✓i) RZ(✓j) RZ(✓i + ✓j)

10 RZ(✓i) • RZ(✓j)

Z

• RZ(✓i + ✓j)

Z

11 RZ(✓i) • RZ(✓j) • RZ(✓i + ✓j)

the time-dependence of the Hamiltonian. Nonetheless, a regular structure appears in

the circuits for TFIM simulations, which can be exploited for developing heuristics for

a DS quantum circuit compiler.

A closer examination of this circuit structure in terms of quantum gates gives

insight into how to tailor such a DS compiler for TFIM circuits. First, all single-qubit

operators (blue blocks of Figure 1b) are of the form exp(�i↵�x

j
), where ↵ is a real

variable and j identifies the qubit on which the operator acts. This action can be

applied to qubit j with the gate RX(2↵)[j], which rotates qubit j around the x-axis

by an angle 2↵. Second, all two-qubit operators (green blocks of Figure 1b) are of the

form exp(�i��z

j
�z

j+1), where � is a real variable and j, j+1 identify the qubits on which

the operator acts. This action can be applied to qubits j, j + 1 with the gate sequence

(CNOT [j, j + 1], RZ(2�)[j], CNOT [j, j + 1]), where RZ(✓)[j] rotates qubit j around

the z-axis by an angle ✓ and CNOT is a two-qubit controlled-not gate. Therefore, when

given a TFIM circuit, the compiler should expect to see a set of RX gates on all qubits

interleaved with the sequence CNOT,RZ,CNOT on nearest neighbor qubits. The DS

compilers are therefore designed to take as input high-level circuits containing gates

from the set {RX(✓), RZ(✓), CNOT}.

The native gate sets on IBM and Rigetti’s quantum processors are slightly di↵erent,
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Here, we present two domain-specific quantum circuit compilers,
specifically designed for circuits simulating spin dynamics under a
special class of Hamiltonians, that outperform state-of- the-art general-
purpose compilers in terms of circuit size reduction by around 25-30%
as well as wall-clock compilation time by around 40% (dependent on
system size and simulation time-step).

FIG. 2: Performance comparison of the domain-specific compiler to Rigetti’s

general-purpose compiler. (a) Absolute reduction in gate count using the DS compiler over

Rigetti’s general-purpose compiler, for varying system size. (b) Percent reduction in gate

count using the DS compiler with respect to Rigetti-compiled circuit size, for varying

system sizes. (c) Percent reduction in wall-clock compilation time using the DS compiler

with respect to Rigetti-compiled circuit size, for varying system sizes.

D. IBM Native Gate Set Domain-Specific Compiler

Algorithm 2 shows pseudocode detailing the order in which a subset of the identities from

Table I are applied. The first loop applies identity 5 to swap the control and target qubits

of each CNOT gate, which primes the circuit for further reductions. The second loop uses

identity 6 to remove consecutive pairs of Hadamard gates acting on the same qubit. The

third loop searches for an RZ(✓) gate sandwiched between two Hadamard gates, a common

motif found in the input circuits, and applies identities 2, 8, and 9 in concert with its inner

loop 4 to transform all Hadamard gates into native gates, contract consecutive rotation gates

about the same axis on the same qubit, and contract RZ gates on opposite side of a control

qubit of a CNOT gates. The fifth loop transforms any remaining Hadamard gates to native

gates, working in concert with its inner loop 6 to contract pairs of consecutive Z-rotation

gates introduced to the circuit. Finally, not shown in the pseudocode, is the removal of any

trailing gates at the very end of the circuit that only alter the phase of the system, and

thus do not a↵ect a measurement gate that immediately follows. Similar to Algorithm 1, a

heuristic similar to the AI technique of unit propagation is applied in Algorithm 2 in loops 3

and 5, which are both outer loops of gate rearrangement with inner loops of gate reductions.

To test the performance of this compiler, we used the same simulation algorithm used for

testing the Rigetti compilers to create a sequence of high-level TFIM circuits. Results can

13

My CONTRIBUTION
1. Deciphering the compiler by Rigetti

and IBM
2. Designing the algorithm to beat 

available compiler
3. Writing the optimal compiler code for 

Rigetti machine and testing it. 

Domain-Specific Compilers for Dynamic Simulations on Quantum Computers

Lindsay Bassman,1 Sahil Gulania,2 Connor Powers,1 Rongpeng Li,3 Thomas Linker,1

Kuang Liu,1 T. K. Satish Kumar,4 Rajiv K. Kalia,1 Aiichiro Nakano,1 and Priya

Vashishta1

1)
Collaboratory for Advanced Computing and Simulations,

University of Southern California, Los Angeles, CA 90089,

United States of America

2)
Department of Chemistry, University of Southern California, Los Angeles,

CA 90089, United States of America

3)
Department of Physics, University of Southern California, Los Angeles, CA 90089,

United States of America

4)
Department of Computer Science, University of Southern California, Los Angeles,

CA 90089, United States of America

(Dated: 27 February 2020)

1

Quantum Science and Technology

ACCEPTED MANUSCRIPT

Domain-specific compilers for dynamic simulations of quantum materials
on quantum computers
To cite this article before publication: Lindsay Bassman et al 2020 Quantum Sci. Technol. in press https://doi.org/10.1088/2058-9565/abbea1

Manuscript version: Accepted Manuscript
Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2020 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 68.181.17.104 on 22/11/2020 at 00:51

Here, we present two domain-specific quantum circuit compilers,
specifically designed for circuits simulating spin dynamics under a
special class of Hamiltonians, that outperform state-of- the-art general-
purpose compilers in terms of circuit size reduction by around 25-30%
as well as wall-clock compilation time by around 40% (dependent on
system size and simulation time-step).

FIG. 2: Performance comparison of the domain-specific compiler to Rigetti’s

general-purpose compiler. (a) Absolute reduction in gate count using the DS compiler over

Rigetti’s general-purpose compiler, for varying system size. (b) Percent reduction in gate

count using the DS compiler with respect to Rigetti-compiled circuit size, for varying

system sizes. (c) Percent reduction in wall-clock compilation time using the DS compiler

with respect to Rigetti-compiled circuit size, for varying system sizes.

D. IBM Native Gate Set Domain-Specific Compiler

Algorithm 2 shows pseudocode detailing the order in which a subset of the identities from

Table I are applied. The first loop applies identity 5 to swap the control and target qubits

of each CNOT gate, which primes the circuit for further reductions. The second loop uses

identity 6 to remove consecutive pairs of Hadamard gates acting on the same qubit. The

third loop searches for an RZ(✓) gate sandwiched between two Hadamard gates, a common

motif found in the input circuits, and applies identities 2, 8, and 9 in concert with its inner

loop 4 to transform all Hadamard gates into native gates, contract consecutive rotation gates

about the same axis on the same qubit, and contract RZ gates on opposite side of a control

qubit of a CNOT gates. The fifth loop transforms any remaining Hadamard gates to native

gates, working in concert with its inner loop 6 to contract pairs of consecutive Z-rotation

gates introduced to the circuit. Finally, not shown in the pseudocode, is the removal of any

trailing gates at the very end of the circuit that only alter the phase of the system, and

thus do not a↵ect a measurement gate that immediately follows. Similar to Algorithm 1, a

heuristic similar to the AI technique of unit propagation is applied in Algorithm 2 in loops 3

and 5, which are both outer loops of gate rearrangement with inner loops of gate reductions.

To test the performance of this compiler, we used the same simulation algorithm used for

testing the Rigetti compilers to create a sequence of high-level TFIM circuits. Results can
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