

## DataScale: Software Overview

May 2024



#### SambaNova Software Stack



Free,hosted multi-tenant access

Paid, dedicated, single tenant access



#### SambaFlow

- Supports standard ML frameworks such
  as Pytorch
- Automatically extracts, optimizes and maps dataflow graphs onto RDUs
  - + Achieve high performance without the need for low-level kernel tuning
- A consistent programming model for scaling from 1-RDU to multi system configurations
- Key components:

SambaNova

- + A Python interface to compile & run models
- + Compiler, intakes a Pytorch graph and outputs a PEF
- + Runtime, custom OS for RDUs



# **SambaFlow Compiler**



Copyright © 2024 Sambanova Systems

17.30400 R -11,77900 R 15,26971 8,36268 8,36268 6,00000 52,54424 0,00175 52,54424 0,00199 57,13300

#### Samba Compilation Flow

- Samba
  - + SambaNova PyTorch compilation & run APIs
- Graph compiler
  - High-level ML graph transformation & optimizations
- Kernel compiler
  - + Low-level RDU operator kernel transformation & optimizations
- Kernel library
  - + RDU operator implementations

![](_page_4_Figure_9.jpeg)

![](_page_4_Picture_10.jpeg)

## **Compiler Modes**

#### **O0** Operator Mode

- Initial bring up and model testing
- Each operator is run as a separate function
- Some optimizations applied

#### O1 Module Mode

- Fuse operators into modules for optimization
- Fusion rules defined in YAML files, heuristics automatically applied
- Reusability

#### O1HD

User directed heuristic optimization

#### **O3 Full Graph Mode**

- Fuse and optimize across entire graph
- Configuration specific
- HD files provide expert tuning
- Limited reusability

Each node is a PyTorch operator, i.e GEMM, ReLU, etc.

![](_page_5_Figure_17.jpeg)

![](_page_5_Picture_18.jpeg)

![](_page_5_Picture_19.jpeg)

## **O1 Operator Fusions**

- Patterns of operators to fuse into a dataflow
  - Users can also define their own patterns in yaml, or define directly in the app
- Each pattern can also specify a "heuristic"
  - A heuristic is a specific strategy for optimization, put together as a package deal
    - e.g. sharding, tiling, & section cuts
  - + Heuristics are flexible, being applicable to any pattern that meets its requirements

![](_page_6_Figure_7.jpeg)

![](_page_6_Picture_8.jpeg)

Copyright © 2024 Sambanova Systems

#### **Heuristics**

- Each heuristic defines a different compiler optimization strategy
  - + Different heuristics are different optimization strategies in deciding tiling/sharding/par-factors/section-cuts
- Three main heuristics, with more variations planned
  - + Default O3 heuristics
  - + GEMM-dominated Heuristic
  - + MHA Heuristic
- Heuristics are plug-n-play: users can control which op-fusion pattern uses what heuristics

![](_page_7_Picture_8.jpeg)

# SambaFlow Runtime

![](_page_8_Picture_1.jpeg)

17,30400 R 11,77900 R

15,26971 0,00000 8,36268

0,00175 52,54424 0,00199 57,13300

1 17779

#### Overview

- Scalable high-performance runtime stack for SambaNova dataflow distributed systems.
- Operates as an **operating system** for RDUs
  - + Manages AI compute, memory, I/O including PCIe and networking
  - + Manages application/graph setup, scheduling, execution and tear-down
- Multi-OS support : Ubuntu 20.04.3 LTS, RedHat 8.5
- Minor-version backward compatibility for all Runtime interfaces

![](_page_9_Picture_7.jpeg)

![](_page_9_Picture_8.jpeg)

## **Core features of Runtime**

- Model parallel within a node
- Data-Parallel within and across nodes over RDUConnect (Inter-RDU) networking fabric
- Reliability, Availability, Serviceability (RAS)
- Support for external compute nodes and remote storage via host network fabric
- Debugger, performance & system management tool chain
- Language agnostic system management layer (SNML) interface for customers

![](_page_10_Figure_7.jpeg)

![](_page_10_Picture_8.jpeg)

#### Multi-user and Multi-tenancy

- Multi-Tenant support
  - + OCI-compatible Container support
- Multi-User support
  - + Support upto 8 applications simultaneously on a node
  - + Mutually exclusive compute, memory and IO resources between applications

![](_page_11_Figure_6.jpeg)

![](_page_11_Picture_7.jpeg)

#### **Distributed Data Parallel Training**

- Distributed training through data parallel
  - + Across RDUs, nodes and racks
  - + Support > 1k RDUs over RDMA transport
- Algorithm-Topology library
  - + Multi bi-directional ring, All-to-All, Hierarchical allreduce

![](_page_12_Figure_6.jpeg)

- Optimized Dataplane using Collective Communication Library (CCL) functions
  - + Achieve high bandwidth over multiple IO fabrics
- Support primitives such as allreduce, allgather, send, recv
  - + Support mixed precision (FP32/BF16) reduce, gradient grouping & sync overlap

![](_page_12_Picture_11.jpeg)

#### System Reliability, Availability & Serviceability

- Hardware fault/error management
  - + Database-based hardware fault/error management
    - Provide records of error events, faulty hardware and recovery suggestions
  - + Provide a tool interface for the fault/error management
    - /opt/sambaflow/bin/snfadm

| /NODE/XRDU_0/RDU_0/PCIE_8          |  | N/A              | I | Present |  | Online |
|------------------------------------|--|------------------|---|---------|--|--------|
| /NODE/XRDU_0/RDU_0/PCIE_9          |  | N/A              | Ι | Present |  | Online |
| /NODE/XRDU_0/RDU_0/PCIE_10         |  | N/A              | Ι | Present |  | Online |
| /NODE/XRDU_0/RDU_0/PCIE_11         |  | N/A              | I | Present |  | Online |
| /NODE/XRDU_0/RDU_0/TILE_0          |  | N/A              | I | Present |  | Online |
| /NODE/XRDU_0/RDU_0/TILE_1          |  | N/A              | Ι | Present |  | Online |
| /NODE/XRDU_0/RDU_0/TILE_2          |  | <u>N/A</u>       | I | Present |  | Online |
| /NODE/XRDU_0/RDU_0/TILE_3          |  | N/A              | I | Present |  | Online |
| /NODE/XRDU_0/RDU_1                 |  | 407030B460D05B55 | Ι | Present |  | Online |
| /NODE/XRDU_0/RDU_1/DDRCH_0/DIMM_G0 |  | 22B0D4A          | Ι | Present |  | Online |
| /NODE/XRDU_0/RDU_1/DDRCH_0/DIMM_G1 |  | 22B0EB8          | Ι | Present |  | Online |
| /NODE/XRDU_0/RDU_1/DDRCH_1/DIMM_H0 |  | 22B0D45          | I | Present |  | Online |
| /NODE/XRDU_0/RDU_1/DDRCH_1/DIMM_H1 |  | 22B0D3A          | Ι | Present |  | Online |

![](_page_13_Picture_7.jpeg)

## **Application Diagnostics and Debugging**

- **Debuggability** debug when something is wrong
  - + slurm\_feeder for pef contents
  - + stdout
  - + Syslog-based logging:
    - sn.log/snd.log
    - /var/log/sambaflow/runtime
- **Observability** show what happens in the application
  - + Raise exceptions to the application programmatically
  - + Syslog-based logging:
    - sn.log/snd.log
    - /var/log/sambaflow/runtime

- **Diagnostics** show what happens on RDU
  - + Compute statistics
    - o sntilestat tool
  - + Memory statistics
    - snddrstat tool
  - + IO statistics
    - snpciestat tool
- SambaTune
  - + A tool to help users gain insights in model performance

![](_page_14_Picture_21.jpeg)

#### **More Details**

- Get more details on Sambanova Public Docs
  - + <u>SambaFlow developer documentation</u>
- Contact Sambanova Support team
  - + <u>help@sambanova.ai</u>
- Go to the Support Portal
  - + <u>support.sambanova.ai</u>

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

![](_page_16_Picture_0.jpeg)

# Thank you

![](_page_16_Picture_2.jpeg)