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May 7- 8, 2024
Cerebras AI Training Workshop
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Agenda
Time Topic

Day 1: Tuesday 6 May 1:00pm-4:30pm CDT (11:00am-2:30pm PDT)

1:00 - 1:20pm Introduction

1:20 - 1:35pm Hardware and systems

1:35 - 1:50pm Software and programming

1:50 - 2:00pm Break

2:00 - 2:30pm How-to: Model porting, layer API, data loaders

2:30 - 2:45pm HuggingFace to CS-2 overview

2:45 - 3:05 pm How-to: Monitoring and profiling

3:05 - 3:15pm Break

3:15 - 4:00pm Hands-on session for training

4:00 - 4:30pm Release 2.2.1 highlights

Day 2: Wednesday 7 May 1:00pm-4:30pm CDT (11:00am-2:30pm PDT)

1:00 - 1:45pm Efficient training with Cerebras, scaling laws, how to train LLMs

1:45 - 2:45pm User training: hands-on LLM model

2:45 - 3:00pm Break

3:00 - 4:00pm HPC: CS for HPC: SDK, CSL and past examples

4:00 - 4:20pm Roadmap presentation

4:20 – 4:30pm Closing, final Q&A
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Cerebras Systems
Building and deploying a new class of computer system
Designed for the purpose of accelerating AI and changing the future of AI work

Founded in 2016

350+ Engineers

Offices
Silicon Valley | San Diego | Toronto | Tokyo

Customers
North America | Asia | Europe | Middle East
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Large-scale AI+HPC has transformative potential 
for science and industry

However, these compute workloads are complex and time-intensive 
to implement on clusters of legacy, general purpose processors

Performance and programming at scale 
are constraints on our ability to “go big” 
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Large Models Don’t Fit on GPUs

ChatGPT (28TB)

H100 (80GB)
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Developers must cut the model into many pieces..
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And spread them on hundreds of GPUs
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An ML problem just turned into a parallel programming problem.
A  hardware problem just became a supercomputer problem.

Then re-write the model to work across a cluster
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This causes a code 
explosion

nanoGPT
1B Parameters

639 lines of code

nanoGPT
1B Parameters

639 lines of code

Megatron
100B Parameters

20,507 lines of code
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You never have to do this on Cerebras
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The Cerebras Way
Build a compute & memory system that’s vastly larger than the model

Cerebras Wafer Scale Cluster up to 1,200 TB

ChatGPT
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Build the fastest AI accelerators

Connect into easy to use and quick to 
deploy AI supercomputers

Train models for the open source 
community and enterprise customers

Provide extensive in-house ML 
expertise

The Cerebras Way
Make GenAI models easy
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• We built the largest chip in the world; 
56x larger than a GPU; 
tailor-made for large Generative AI workloads.

• Outperforms state-of-the-art chips across 
all key dimensions.

• It is faster, easier to use, and requires 
less power and space than alternative 
hardware.

Cerebras Wafer-Scale Engine
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Cerebras CS-2, CS-3
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Wafer Scale Cluster: Scalable AI Supercomputer

CS-3

SwarmX

MemoryX 128 gigabyte

1 CS-2, 1 CS-3

62 petaflops

1 billion parameters

1 petabyte

192 CS-2, 2048 CS-3s

256 exaflops

24 trillion parameters
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Exa-scale Performance
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Single Device Simplicity

MemoryX Memory Units

SwarmX Interconnect

Wafer Scale Engines

The Cluster Look and Program Like a Single Device
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Interconnect Interconnect

...

Memory Memory

Interconnect

Memory

I see one big 
device

I see one big 
device

I see one big 
device

You Program It Like A Single Device
No Matter The Cluster Size

1x CS-X 4x CS-X 2048x CS-3
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Interconnect Interconnect

...

Memory Memory

Interconnect

Memory

And Your Model Always Fits
1B or 1T Parameters

1.5TB 36TB 1,200 TB
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Llama 
7B

Llama 70B Llama 700B

I see one big 
device

I see one big 
device

I see one big 
device
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Run 
Experiments Pick Winners Scale UpDesign the  

Experiments

How to scale on a GPU?
Ti

m
e 

/ W
or

k

.5B
3B

13B

100B

1 GPU

8 GPUs
Data Parallelism 

256 GPUs
Data & Tensor & 
Pipeline parallel

2048 GPUs
Data & Tensor & 
Pipeline & Expert & 
Sequence parallelism
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Ti
m

e 
/ W

or
k

1 or “n” CS-2s
Same Effort

Run 
Experiments Pick Winners Scale UpDesign Sweeps

.5 B 3 B 13 B 100B

How to scale on a CS-2?
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On GPUs, small models are the default; 
large models take large engineering effort.

On CS-Xs, large models are the default; 
small models come for free.
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Models on Cerebras
From multi-lingual LLMs to healthcare chatbots to code models 



© 2023 Cerebras Systems Inc. All Rights ReservedCerebras Proprietary & Confidential Information

All the Latest ML Techniques & Recipes

Variable Seq Training 
DPO

LL360 – Open data, models, scripts

Multi-lingual
Pre-training & IFT

Llama70B fine tuning
Domain Adaptation

GPT-3 in 565 lines of 
code

Most FLOP efficient
LLM dataset

First family of open GPT models
and OSS use of muP

RAG

LoRA
MoE

Multi 
Modal

Sparse 
Models
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Med42: Llama-70B Fine-tuned in <1 Week  to 
Pass the US Medical License Exam

• Scored 72% on USMLE, beating GPT-3.5

• With M42: global healthcare company with 
over 450 hospitals and clinics

• Custom curated healthcare dataset of peer-
reviewed papers, medical textbooks, 
international health agency datasets.

• Run finished in 1 weekend
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FLOR-6.3B State-of-the-Art Catalan, Spanish, 
and English LLM

• Best Catalan model, beating BLOOM-7.3B

• Used latest language adaptation techniques for 
languages with less training data

• Reduced inference cost by 10% vs. BLOOM, 
incorporating a new, more efficient tokenizer

• Used to build RAG systems for specialized domains

• Trained on 140B Tokens and in 2.5 days.

• Open Source: Downloaded over 3000 times

FLOR-6.3B
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JAIS-30B: State-of-the-Art Arabic-
English Bilingual LLM

• SoTA Arabic: Outperforms all other Arabic models
• English: Llama-30B quality in English 

• Co-developed with G42’s Core42 and MBZUAI

• Now on Azure AI Cloud as the foundation of their  Model-as-a-
Service in the Middle East

Checkpoints on 
HuggingFace

Paper available 
on Arxiv
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Cerebras & GlaxoSmithKline

“On a Cerebras system we pre-trained our EBERT 
model for 1.75 epochs of 127 epigenomes in ~2.5 
days with batch size 8192, which we estimate would 
have taken ~24 days of training on a GPU cluster with 
16 nodes.”

“The training speedup afforded by the Cerebras 
system enabled us to explore architecture 
variations, tokenization schemes and 
hyperparameter settings in a way that would have 
been prohibitively time and resource intensive on a 
typical GPU cluster.”

24 days reduced to 2.5 
days with Cerebras

Paper: https://arxiv.org/abs/2112.07571
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TotalEnergies achieves 228x speedup vs. A100 on seismic imaging 
algorithm
“As can be seen, when the largest problem is solved, a 
speedup of 228x is achieved... Moreover…it is unlikely 
that such a performance gap can be closed… given 
the strong scalability issues encountered by this kind of 
algorithm when using a large number of multi-GPU nodes 
in HPC clusters.”

Speedup of 228x 
achieved with 

Cerebras

Diego Klahr VP
VP of Engineering at TotalEnergiesPaper: https://arxiv.org/abs/2204.03775 

https://arxiv.org/abs/2204.03775


© 2023 Cerebras Systems Inc. All Rights ReservedCerebras Proprietary & Confidential Information

“We report 92.58PB/s sustained 
throughput, more than 3X faster than 
the aggregated theoretical bandwidth 
of Leonardo or Summit... Our 
bandwidth score thus outperforms 
the fastest supercomputer Frontier 
and is comparable to Fugaku, at a 
much lower acquisition and 
operational cost.”

KAUST uses Cerebras CS-2 cluster to achieve performance of the 
world’s #1 supercomputer at 1/10th the cost

Paper: https://dl.acm.org/doi/10.1145/3581784.3627042 Tony Chan 
President, KAUST

https://dl.acm.org/doi/10.1145/3581784.3627042
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“The WSE is found to run 130 times faster 
than a highly optimized CUDA version of the 
kernel run on an NVIDIA A100 GPU – 
significantly outpacing the expected 
performance increase given the relative number 
of transistors each architecture has”

Paper: https://arxiv.org/abs/2311.01739

Argonne National Labs Uses CS-2 
to Accelerate Monte Carto Particle 
Transport by 130x Over A100

Upcoming PHYSOR publication demonstrates 
180x over A100.

https://arxiv.org/abs/2311.01739
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Cerebras is the #1 AI Semiconductor Startup
Cerebras is the leader in Generative AI and High-Performance Computing publications

Committed to accelerating research 
through open-source, including:

• State-of-the-art models (BTLM, Jais-30B)

• Datasets and scripts (SlimPajama)

• Model training frameworks (GigaGPT)

Link to report: https://press.airstreet.com/p/state-of-ai-report-compute-index-v3 

https://www.cerebras.net/publications/
https://huggingface.co/cerebras
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://github.com/Cerebras/gigaGPT
https://press.airstreet.com/p/state-of-ai-report-compute-index-v3
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We appreciate this opportunity to present you our system,

and importantly,

to discuss how we can help you accelerate research
And explore new scientific frontiers.
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Hardware and Systems



© 2023 Cerebras Systems Inc. All Rights Reserved

Cluster-scale performance in a single chip

850,000 cores optimized for sparse linear algebra
46,225 mm2 silicon
2.6 trillion transistors
40 gigabytes of on-chip memory
20 PByte/s memory bandwidth
220 Pbit/s fabric bandwidth
7nm process technology

Cerebras Wafer-Scale Engine 
(WSE-2) 
Still the Largest Chip Ever Made
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WSE Architecture Basics
The WSE appears as a logical 2D array of 
individually programmable Processing Elements

Flexible compute
• 850,000 general purpose CPUs
• 16- and 32-bit native FP and integer data types
• Dataflow programming: Tasks are activated or 

triggered by the arrival of data packets

Flexible communication
• Programmable router
• Static or dynamic routes (colors)
• Data packets (wavelets) passed between PEs
• 1 cycle for PE-to-PE communication

Fast memory
• 40GB on-chip SRAM
• Data and instructions
• 1 cycle read/write

Tensors Tensors

…

…

…

…

…

… … … … … …

Fabric router

Processor

Memory

Offramp Onramp

PE
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• Purpose-built high performance, scalable appliance
• Complete hardware + software solution for large-scale AI
• One to many CS-2s

• Datacenter-scale AI compute in a single row or lab
• CS-2 accelerator(s)
• Disaggregated, independently scalable parameter storage
• High performance smart interconnect fabric
• Standards-based input and management workers

• Benefits
• Run the largest models today on a single machine
• Scale up model size with a single line code change
• Scale out to go faster with near-linear performance 
• One or many machines programmable as a single node
• Simple data-parallel scaling; no need for complex model- / tensor-parallel distribution

Wafer Scale Cluster

Appliance Mode

Cerebras Wafer-
Scale Cluster

SwarmX

MemoryX

Pre-processing, 
management

CS-2
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Scale model size and training speed independently

Cerebras Weight Streaming technology disaggregates 
storage and compute to enable trillion parameter model 
training

Samples

Labels

Weights

Gradients

Streamed 1 
layer at a time

External model 
memory,  

parameter server

External 
training data 

storageCS-2 Compute

Single WSE can run
extreme model size
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Built for extreme-scale neural networks:
• Weights stored externally off-wafer
• Weights streamed onto wafer to compute layer
• Activations only are resident on wafer
• Execute one layer at a time

Decoupling weight optimizer compute
• Gradients streamed out of wafer
• Weight update occurs in MemoryX

Weight Streaming Execution Model

Weights

Gradients

MemoryX

Optimizer 
Compute

Weight
Memory

CS-2 Dataset 
Server
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Hybrid parallelism on traditional devices

Challenges to Scaling

Device 1 Device 2

Data Parallel

Sample 1

Multiple samples at a time
Parameter memory limits

Sample N

Multiple layers at a time
Communication overhead

N2 activation memory

Device 1 Device 2

Pipelined Model Parallel

Sample 1

Multiple splits at a time
Communication overhead

Complex partitioning

Device 1 Device 2

Tensor Model Parallel

Sample 1

Distribution complexity scales dramatically with cluster size
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Specialized interconnect for scale-out
• Data parallel distribution through SwarmX interconnect

• Weights are broadcast to all CS-2s

• Gradients are reduced on way back

Multi-system scaling with the same execution as single system

• Same system architecture

• Same network execution flow

• Same software user interface

Near-Linear Data Parallel Only Scaling

MemoryX

Optimizer 
Compute

Weight
Memory Weights

Gradients

Weights

Gradients

SwarmX

CS-2
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• Many independent small cores
• 850,000 processor cores
• Each core has its own program code and HW 

scheduler
• Large on-chip memory near compute

• Distributed architecture, all cores have dedicated 
memory

• Single clock cycle memory access
• Sparsity acceleration

• Enabled by fine-grained dataflow and high 
memory bandwidth

• Speed up structured and unstructured sparsity

• Disaggregated compute and parameter memory
• Scaling to multiple chips with only data parallelism

• Simple programming and linear performance 
scaling

Cerebras WS Cluster Differentiators

44

Want to Dive Deeper? Check out our Hot Chips 34 Presentation: https://hc34.hotchips.org/
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Cerebras systems at 
ALCF
• 2-node Wafer-Scale Cluster

• Supporting up to 30B parameter 
models

• GenAI-optimized:
• NLP (LLMs)
• Multimodal VQA

• 2x CS-2s, with:
• 850k cores each
• 40GB on chip memory each

• Can distribute jobs across one or 
both CS-2s, with data parallel 
scaling when using both machines

45
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Software and Programming
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Integration with PyTorch
• Models defined in framework + Cerebras API
• Optimally maps from PyTorch to high performance kernels

• Uses polyhedral code-generation or hand-written kernels

• Compiler using industry standard MLIR framework
• Cerebras is an active contributor to the MLIR open- source 

community

• User does not worry about distributed compute or 
parallelism

Lowering from Model to Wafer

47

Reference Models

Model script

Ops Layer API

Cerebras Graph Compiler

Placement & routing engine

CS-2

Kernel library Kernel autogen
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cstorch Software Stack
Frontend API

• cstorch API mirrors torch API
• Helps with single device abstraction

• Tensor Ops traced through LazyTensorCore (LTC)
• Graph-by-execution with lazy evaluation
• Also drives Google’s xla/tpu device

Cerebras torch 
      “device”

 

PyTorch

cstorch API

LazyTensorCore 

Wafer-Scale Cluster
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cstorch Software Stack

Cerebras torch 
      “device”

 

PyTorch

cstorch API

LazyTensorCore 

LTC MLIR
Plugin 

Torch Dialect

Cerebras
MLIR Dialect

Wafer-Scale Cluster

Compilation

• cstorch API mirrors torch API
• Helps with single device abstraction

• Tensor Ops traced through LazyTensorCore
• Graph-by-execution with lazy evaluation
• Also powers Google’s xla/tpu device

• MLIR translation from LTC provided by torch-mlir
• Hardware focused compiler ecosystem for torch

• Cerebras MLIR stack handles cluster optimizations
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cstorch Software Stack

Cerebras torch 
      “device”

 

PyTorch

cstorch API

LazyTensorCore 

LTC MLIR
Plugin 

Runtime 
ExecutorTorch Dialect

Cerebras
MLIR Dialect

Wafer-Scale Cluster

Runtime Executor

• cstorch API mirrors torch API
• Helps with single device abstraction

• Tensor Ops traced through LazyTensorCore
• Graph-by-execution with lazy evaluation
• Also powers Google’s xla/tpu device

• MLIR translation from LTC provided by torch-mlir
• Hardware focused compiler ecosystem for torch

• Cerebras MLIR stack handles cluster optimizations

• Tensors get transferred to cluster as needed
• Initial weights sent before first step
• Inputs sent each step from custom data executor

• Execution driven asynchronously by cluster
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• Cerebras ModelZoo supports a wide range of decoder-only (GPT-style), encoder-only (BERT-
style) and encoder-decoder (T5-style) models

• Support for various positional encodings: learned (GPT), fixed, RoPE (GPT-J, Llama), ALiBi 
(Bloom)

• Support for various activation functions: relu, gelu (GPT), swiglu (Llama)
• Support for sequential (GPT, Llama) and parallel (GPT-J, GPT-NeoX) attention and feed-forward 

blocks
• Support for different attention types: vanilla multi-head (GPT), MQA (Llama 7B, 13B), GQA (Llama-

2 70B)

• We provide checkpoint converters to and from HuggingFace format for many popular 
models

• Llama, Llama-2, Falcon, Bloom, CodeGen, Starcoder, and others

• These models can be trained and fine-tuned on Cerebras hardware
• Even the largest models can run on 1xCS-2

• Llama 70B requires > 1TB of memory for weights and optimizer states only
• Full fine-tuning is feasible on 1xCS-2 52

Running on Cerebras with Cerebras ModelZoo
https://github.com/Cerebras/modelzoo 

https://github.com/Cerebras/modelzoo


© 2024 Cerebras Systems Inc. All Rights Reserved

How to scale from 1B to 70B on Cerebras

### GPT-3 XL 1.3B

hidden_size: 2048
num_hidden_layers: 24
num_heads: 16

gpt3_1b_params.yaml

python run.py \
--params gpt3_1b_params.yaml \
--num_steps=100 \
--model_dir=model_dir \

Training:

### Llama-2 70B

hidden_size: 8192
num_hidden_layers: 80
num_heads: 64

llama2_70b_params.yaml

python run.py \
--params llama2_70B_params.yaml \
--num_steps=100 \
--model_dir=model_dir \

Training:
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Define the model
• Write in PyTorch
• Parameterize based on yaml file
• Write logical model for single device

Train the model
• Point to the model parameters
• Specify the number of CS-2s
• Specify the number of steps
• Run! 

Programming / training with the cluster is simple

### GPT-3 XL 1.3B

hidden_size: 2048
num_hidden_layers: 24
num_heads: 16

params_gpt3xl.yaml

python run.py \
--params params_gpt3xl.yaml \
--num_csx 1 \
--num_steps 100 \
--model_dir model_dir \
--mode train

training:
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Scaling the model
• Change the model parameters in yaml

• Let’s run GPT-NeoX 20B on 4x CS-2s

• Fully data-parallel training
• Run!

Scaling to larger models is simple

### GPT-NeoX 20B

hidden_size: 6144
num_hidden_layers: 44
num_heads: 64

params_gptneox.yaml

python run.py \
--params params_gptneox.yaml \
--num_csx 4 \
--num_steps 100 \
--model_dir model_dir \
--mode train

training:
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Scaling from one CS-2 to a cluster is a 1-line change
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Weight Streaming Simplifies Large Model Training by 30x

Cerebras CS-2 trains 100B parameter 
models with the ease and simplicity of 
a GPU training a 1B parameter model.
We made our compute and memory 
extremely large so that our software 
can be extremely simple.
The result:
- 30x speed up in implementation
- A fraction the # of ML engineers
- Dramatically faster iteration and 

experimentation
- Get to market first with far larger and 

more accurate models.
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• Even the largest state-of-the-art models can train on a single CS-2
• Near-linear time to solution scaling across multiple CS-2s in a wafer-scale cluster

Figure. Measured training throughput scaling for 250M-20B GPT models over 1-16 CS-2 systems; projected scaling to 64 systems.

Data Parallel Models Enables Near Linear Scaling
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Cerebras cluster scaling – GPT training throughput
GPT-J 250M MSL 10K

GPT-3 1.3B MSL 2K

GPT-3 1.3B MSL 10K

GPT-J 2.5B MSL 10K

GPT-3 2.7B MSL 2K

GPT-J 6B MSL 2K

GPT-3 6.7B MSL 2K

GPT-3 20B MSL 2K

GPT NeoX 20B MSL 2K

GPT-J 25B MSL 10K
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Resume at 2:00pm CT

Break
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Model Porting, Layers API, and 
Dataloaders

Software APIs
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Model Porting
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Stage Data Processing and 
Dataloaders

Define model architecture

(1) Getting started with Cerebras 
Ecosystem

Use data preprocessing from 
Cerebras Model Zoo

Use model implementation in 
Cerebras Model Zoo and 
customize hyperparameters in the 
params yaml file(2) Use your own data and 

hyperparameters
Implement your own data 
preprocessing

(3) Define your own model using 
Cerebras Model Zoo tools

Port your PyTorch or code using 
run function in Cerebras Model 
Zoo and Cerebras Model Zoo 
supported operations API

(4) Define your model using 
Cerebras PyTorch API

Have more flexibility porting your 
code with Cerebras PyTorch API

62

Model Porting Options
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• If your primary goal is to use one of the Model Zoo models with minimal changes, we 
recommend start from the Cerebras Model Zoo and add changes you need.

• Hypothetical scenario:
• We work with the PyTorch implementation of FC_MNIST in the Cerebras Model Zoo. We create a 

synthetic dataloader to evaluate performance of the network with respect to different input sizes and 
number of classes.

• To achieve this goal:
• In data.py, we create a function called get_random_dataloader that creates random images and 

labels. We instrument the function to specify in the params.yaml file the number of examples, the 
batch size, the seed, the image_size and the num_classes of this dataset.

63

Modify reference models in Cerebras Model Zoo
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• In data.py, we create a function 
called get_random_dataloader that 
creates random images and labels.

64

Modify reference models in Cerebras Model Zoo
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• In model.py, we change the number 
of classes to a parameter in 
the params.yaml file.

65

Modify reference models in Cerebras Model Zoo
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• In configs/params.yaml, we add the 
additional fields used in the 
dataloader and model definition.

66

Modify reference models in Cerebras Model Zoo
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• If your primary goal is to develop new model and data preprocessing scripts, we suggest to 
start by leveraging the common backbone in Cerebras Model Zoo, the run function and file 
structure.

• The run function modularizes the model implementation, the data loaders, the 
hyperparameters and the execution. To use the run function you need:

• Implementation that includes the following:
• Model definition
• Data loaders for training and evaluation

• Params YAML file. This file will be used at runtime.

67

Create new models leveraging Cerebras run function
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• Your code 
skeleton will 
approximately 
look like this.

68

Create new models leveraging Cerebras run function

Import 

Define Model
1. Define the model architecture with torch.nn.Module
2. Then, wrap it by defining a PyTorchBaseModel.

Define Dataloader
• requires a callable (class or function) that takes as input a 

dictionary of params returns a torch.utils.data.DataLoader.

Execute script with run function

https://github.com/Cerebras/modelzoo/blob/main/modelzoo/common/pytorch/PyTorchBaseModel.py
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• Create params YAML file. The 
paremeters skeleton looks like this.
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Create new models leveraging Cerebras run function
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• Historically, we had a number of PyTorch runners in ModelZoo that dictated the full run

• Pros & Cons:
• Easy configuration via Model Zoo params.yaml
• Tied to Model Zoo to run any PyTorch models on a Cerebras system
• Limited generalizability and customizability

• New PyTorch API: 
• Leverages PyTorch 2.0
• Make things as transparent as possible
• Give users the flexibility to write their own training loops
• Provide a more robust API that is less prone to errors when changes are made
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Cerebras PyTorch API
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• A simple skeleton of a full training script.
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Cerebras PyTorch API
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CSTorch Layers API
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Running on Cerebras Wafer-Scale Cluster using cstorch API

Import 1. Import cstorch package
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Running on Cerebras Wafer-Scale Cluster using cstorch API

Define
Model

1. Import cstorch package
2. Define the model

• Model is defined as if running on a single device
• Use familiar torch API with some drop-in 

replacements
• Wrap dataloader in a cstorch data executor
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Running on Cerebras Wafer-Scale Cluster using cstorch API

Define 
Training
Loop

1. Import cstorch package
2. Define the model

• Model is defined as if running on a single device
• Use familiar torch API with some drop-in 

replacements
• Wrap dataloader in a cstorch data executor

3. Create the training loop method
• Nothing novel here, except the decorator
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Running on Cerebras Wafer-Scale Cluster using cstorch API

Train

1. Import cstorch package
2. Define the model

• Model is defined as if running on a single device
• Use familiar torch API with some drop-in 

replacements
• Wrap dataloader in a cstorch data executor

3. Create the training loop method
• Nothing novel here, except the decorator

4. Run the training loop
• Under the hood, compiles the model on the first step 

and starts asynchronous execution
• Outputs (losses) are retrieved as available
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Running on Cerebras Wafer-Scale Cluster using cstorch API

• Scale out to multiple CS-2s with a single 
configuration change

• Near-linear scaling is achieved automatically
• No model change
• No change to the training loop
• No change to effective batch size Scale out
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Sparsity Code Example

Setup

Apply   

Update

• Dynamic sparsity motivates an “optimizer” 
• Updates the sparsity pattern on a cadence
• Aligns sparsity of params, gradients, and 

optionally optimizer state

• Static sparsity is a special case of not updating
• Similar to torch.nn.prune, but fully traced for 

AoT compile
• The torch level representation uses masks

• Compiler automatically transforms to 
Compressed Sparse Row (CSR)
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Dataloading
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• If you have a functioning Huggingface-style 
dataset, it is most efficient to convert it into 
HDF5 format in advance.

• Modelzoo leverages a utility function, 
convert_dataset_to_HDF5(), for this.

• After your dataset is in HDF5 form, simply 
specify an HDF5DataProcessor to leverage in 
your model config.

Offline Huggingface Data Conversion
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• Because all data loading occurs on CPU 
devices in the Cerebras appliance, we only 
need to make a couple of tweaks to 
existing Pytorch dataloaders.

• First, we use the modelzoo helper getters 
num_tasks() and task_id() for efficient 
sharding.

• Second, we set drop_last=True to ensure 
batch sizes are consistent during training.

Implementing Custom Dataloaders
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Huggingface - CS-2 Porting
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Custom or Non-Modelzoo HF Model
• Need to use the cstorch Layers API to re-

implement the model.

• If it’s similar to a model in the Modelzoo, we 
can tweak an existing model implementation.

• gpt_model.py, bert_model.py, etc

• Otherwise, use supported ops and existing 
models as references to modify your Pytorch 
implementation.

Framework Conversion Options

83
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Modelzoo-Supported HF Model
• Life is easy!

• Use Cerebras’ checkpoint conversion utility to 
convert from HF to CS-2 format…or between 
Modelzoo versions!

• Then fine-tune or eval like any Modelzoo 
model.

• Convert back to HF for evaluation or portability 
as needed!

Framework Conversion Options

84
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Bert Bert-sequence-
classifier

Bert-token-
classifier

Bert-summarization Bert-q&a

Bloom Bloom-headless Btlm Btlm-headless codegen
Codegen-headless Code-llama Code-llama-

headless
Dpr Falcon

Falcon-headless Flan-ul2 Gpt2 Gpt2-headless Gpt2 w/ muP
Gptj Gptj-headless Gpt-neox Gpt-neox-headless Jais
Llama Llama-headless LlamaV2 LlamaV2-headless Llava
Mpt Mpt-headless Mistral Mistral-headless Octocoder
Octocoder-
headless

Roberta Santacoder Santacoder-
headless

Sqlcoder

Sqlcoder-headless T5 Transformer Ul2 Wizardcoder
Wizardcoder-
headless

Wizardlm Wizardlm-headless
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Supported Modelzoo Implementations
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• Start by downloading the huggingface checkpoint of interest (if needed).
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Checkpoint Conversion: GPT-J 6B

$ mkdir ~/my_checkpoints

$ wget -P opensource_checkpoints https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json 
~/my_checkpoints

$ wget -P opensource_checkpoints https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/pytorch_model.bin 
~/my_checkpoints 

https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json
https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/pytorch_model.bin
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• Specify the model type, source and target frameworks, then convert!
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Checkpoint Conversion: GPT-J 6B

$ python ~/modelzoo/src/cerebras/modelzoo/tools/convert_checkpoint.py \
 convert \
 --model gptj \
 --src-fmt hf \
 --tgt-fmt cs-2.2 \
 --output-dir ~/my_checkpoints/ \
 --config ~/my_checkpoints/config.json \
 ~/my_checkpoints/pytorch_model.bin

https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json
https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/pytorch_model.bin
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Job monitoring and profiling
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1. Activate Python environment (if not already activated)

2. Launch TensorBoard choosing the model directory of the run

3. ssh into the user node with port binding from your local machine

4. Open 127.0.0.1:6006 from your local browser

How to monitor the results with TensorBoard

$ source /venv/venv_cerebras_r2.0.2/bin/activate

$ tensorboard --logdir_spec={your_modeldir}/train/ --bind_all --port=6006

$ ssh -N -L localhost:6006:localhost:6006  {your_username}@10.72.0.27
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Example output in TensorBoard
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1. Use the Cerebras tool csctl to query the status of the queue. The job phase is one of QUEUED, 
RUNNING, SUCCEDED, FAILED.

2. Every job is recorded using a jobID and it is printed in the training output.
3. To only display all the jobs running including historical ones, use

4. To cancel jobs

5. Detailed documentation
https://docs.cerebras.net/en/latest/wsc/getting-started/csctl.html

How to monitor the queue

$ csctl get jobs 

NAME                AGE  PHASE      SYSTEMS                   USER    LABELS
wsjob-000000000001  18h  RUNNING    CS2-01-01                 user2   custom_label_2

$ csctl get jobs -a

NAME                AGE  PHASE      SYSTEMS                   USER    LABELS
wsjob-000000000000  43h  SUCCEEDED  CS2-01-01                 user1   custom_label_1
wsjob-000000000001  18h  RUNNING    CS2-01-01                 user2   custom_label_2

$ csctl cancel job wsjob-000000000001

https://docs.cerebras.net/en/latest/wsc/getting-started/csctl.html
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How to profile your code with CSTorch Profiler

Capabilities
1. Highlights 10 most time-consuming PyTorch

modules
2. Outputs a JSON file format compatible with Google 

Chrome's tracing tool.

Limitations
1. Currently, does not display details of PyTorch

modules that get executed on the host servers (only 
works on wafer ops).

2. Currently, only profiles `train` mode. 

We will share detailed documentation after the 
presentation!

https://nnetx-my.sharepoint.com/:b:/r/personal/abhi_sharma_cerebras_net/Documents/CSTorch%20Profiler%20(Beta%20release).pdf?csf=1&web=1&e=2NPeOR
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How to profile your code with CSTorch Profiler
1. Clone the Cerebras Model Zoo repository
2. Navigate to the Cerebras Model Zoo model config that you want to run.

3. In the “runconfig” , do the following to specify the range of steps which needs to be profiled:

4. As you can see for the above example, step number 1, 2 and 3 would be profiled.
5. Start the training as usual.

https://github.com/Cerebras/modelzoo/


© 2023 Cerebras Systems Inc. All Rights ReservedCerebras Proprietary & Confidential Information

Example output in console
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Resume at 3:15 pm CT

Break
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Hands-on session for training @ ALCF
Bill Arnold
Argonne Leadership Computing Facility 
arnoldw@anl.gov
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• Email us at developer@cerebras.net
• Sign up for our monthly newsletter at info.cerebras.net/subscribe
• Join our Discord at discord.gg/hZp5MUyw
• Join our Discourse at discourse.cerebras.net/
• LinkedIn - linkedin.com/company/cerebras-systems/
• Twitter - twitter.com/CerebrasSystems
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How to contact Cerebras?

Talk to researchers and our 
ML/SDK Engineers here!

mailto:udai@cerebras.net
https://info.cerebras.net/subscribe
https://discord.gg/hZp5MUyw
https://discourse.cerebras.net/login
https://www.linkedin.com/company/cerebras-systems/
https://twitter.com/CerebrasSystems

