
groq

Grog Al Workshop

ALCF Al Testbed - SRR

Agenda - Day 2

Session Description Length Speaker

Inside look at how the compiler works to compile | 20 mins Philip Lassen, Compiler Engineer

i ™
Siee] ol models for Groq, including an overview of

Overview partitioning and scheduling.
Grog Runtime™ Overview of the runtime, including vyhat itis,how ' 20 mins Aviv Weinstein, Systems Software
Overview models are executed, and how data is transferred Engineer

across the chip.

Accelerating LLMs with
the Grog Language
Processing Unit™ (LPU)

How Groq is accelerating LLMs on the Grog LPU 60 mins Petgr Lillian, Machine Learning
and walkthrough of Llama-2 7B on GrogRack™. Engineer

15 MINUTE BREAK #’

GrogWare Suite™ Overview of GrogWare Suite, Grog's Software 45 mins Hatice Ozen, Customer Applications
Developer Tools Development Kit, including walkthrough of power Engineer

profiling and data visualization.

Enabling Research with A talk with Igor, Fellow and our Head of Siliconon = 25 mins Igor Arsovski, Fellow & Head of Silicon
GCroq the world of Al and how to leverage Groq's tech.

groq" © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 2

Grog™ Compiler SRS EIEI SRS I

Philip Lassen
Compiler Engineer

groq © 2023 Groq, Inc. | Grog Al Workshop

Grog™ Compiler

AGENDA

What is the Grog Compiler

Grog Compiler vs GrogFlow
Stages of the Compiler

Frontend

Middle-end

Backend

Assembler
Compiling big models

Multi-chip partitioning
Future Improvements

groq © 2023 Groq, Inc. | Grog Al Workshop

Groq Public 4

Simplified GrogFlow™ Usage Model

Groq Software to Hardware WorkFlow

groq

© 2023 Grogq, Inc. | Grog Al Workshop

GrogFlow™

O PyTorch 1F A Keras

!

€) ONNX

!
=

MLIR

Grog Compiler

!

Grog Assembler

!

Grog Runtime

!

Groqg Hardware
(GrogCard, GrogNode, GrogRack)

Groq Public

Simplified GrogFlow™ Usage Model

Groq Software to Hardware WorkFlow

groq

© 2023 Grogq, Inc. | Grog Al Workshop

GrogFlow™

O PyTorch 1F A Keras

!

€) ONNX

!
=

MLIR

Grog Compiler

!

Grog Assembler

!

Grog Runtime

!

Groqg Hardware
(GrogCard, GrogNode, GrogRack)

Groq Public

Input Program

Model(torch.nn.Module):
forward(self, A, x, b):

torch.matmul(A, x) + b

model = Model()

torch.onnx.export(model, **inputs, “program.onnx”)

groq" © 2023 Groq, Inc. | Grog Al Workshop

Compiler

I

Function

Instruction

MEM

VXM

MXM

SXM

Read a,s
Write a,s
Gather s, map
Scatter s, map
Countdown d
Step a
Iterations n

unary operation
binary operation
type conversions
Log

TanH

Exp

RSqgrt

Lw
Iw
ABC
ACC

Shift up/down N
Permute map
Distribute map
Rotate stream
Transpose sglé6

Groq Public

7

Compiler Frontend S

Grog Compiler Frontend

O

() PyTorch

Order of # Ops

* 1000s

Tensor Graph

o

o
o

S

Frontend

Middle-end

Back-end

Assembler

groq © 2023 Groq, Inc. | Grog Al Workshop

Y

A4

10s

3rd Party Front-ends

Compiler Middle & Backend

Groqg Public 9

https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/native_functions.yaml
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://docs.google.com/spreadsheets/d/1BgJz1Oe-iKIzQ86wdW5WPd9GzYkwp6IWShpwP1MHavY/edit?usp=sharing

Compiler Middle-End SEEIEIEES

groq © 2023 Groq, Inc. | Grog Al Workshop

Layout Marking

N x M

groq

© 2023 Groq, Inc. | Grog Al Workshop

M x L

N x L

Groqg Public 1

Layout Marking

N x M N x L

M x L

— [SlllEEEEEEEN
EEEEEEEEEEEE
EEENEEENANEE

X EEEEEmmmmm—

MatMul decomposed to 1x320 * 320x320 MatMuls, to produce 1x320 vector output (partial sum)

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 12

NXM * MxL = NxL

1x320

320x320

Install Weights
into 320x320 plane

A

MXM

MatMul decomposed to 1x320 * 320x320 MatMuls, to produce 1x320 partial sum

groq

© 2023 Groq, Inc. | Grog Al Workshop

Groq Public 13

Lowering

Function Instruction

VXM unary operation
binary operation
type conversions
Log
TanH
Exp
RSqgrt

SXM shift up/down N
_ Permute map
Distribute map
Rotate stream
Transpose sgl6

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 14

Compiler Backend REEETIEE

groq © 2023 Groq, Inc. | Grog Al Workshop

Scheduler

Problem:
Schedule compute graph to minimize compute cycles
Considerations:

Which compute cycle?
Which functional unit?
What streams?
Certain streams are reserved
Which Memory slices should we store Constants and Intermediates on?

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 16

Scheduling: Vector vs Tensor

Vector
Schedule single vector operations at a time
Tensor

Bulk-schedule multiple vector operations of the same type
So that they occupy a Functional Unit (FU) in consecutive cycles

Vector IA
C[e] = A[O] + B[9]
for (i = 0; i < 4; ++i) C[1] = A[1] + B[1] _
Cli] = A[i] + B[i] cl2] = A[2] + B[2] C[0..3] = A[0..3] + B[9..3]
C[3] = A[3] + B[3]

groq" © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Scheduler

Vector Tensor

w
groqgit(model, inputs, compiler_flags=["--effort=high"]) groqit(model, inputs, compiler_flags=["--effort=standard"])

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Assembler j e

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 19

Simplified GrogFlow™ Usage Model

Groq Software to Hardware WorkFlow

groq

© 2023 Grogq, Inc. | Grog Al Workshop

GrogFlow™

O PyTorch 1F A Keras

!

€) ONNX

!
=

MLIR

Grog Compiler

!

Grog Assembler

!

Grog Runtime

!

Groqg Hardware
(GrogCard, GrogNode, GrogRack)

Groq Public

Simplified GrogFlow™ Usage Model

Groq Software to Hardware WorkFlow

groq

© 2023 Grogq, Inc. | Grog Al Workshop

GrogFlow™

O PyTorch 1F A Keras

!

€) ONNX

!
=

MLIR

Grog Compiler

!

Grog Assembler

!

Grog Runtime

!

Groqg Hardware
(GrogCard, GrogNode, GrogRack)

Groq Public

Assembler

Input - Output

.aa ->.iop

Goals

Add Instruction Fetches
Instruction Compression
Instruction Encoding

groq © 2023 Groq, Inc. | Grog Al Workshop

[10)

p= >

c c

D » D

> = >

a > S el a

] (o] - (o]]

S £ o £ S

= % o § =

)

= > £

+ +

() O

> >
| Instruction Control Unit |
PCle | Ie))

\

Grog Public

22

Assembler

Input - Output

.aa ->.iop

Goals

Add Instruction Fetches
Instruction Compression
Instruction Encoding

groq © 2023 Groq, Inc. | Grog Al Workshop

[10)

p= >

c c

D » D

> = >

a > S el a

] (o] - (o]]

S £ o £ S

= % o % =

)

£ > £

+ +

() O

> >
| Instruction Control Unit |
PCle | Ie))

\

Grog Public

23

Assembler

Input - Output

.aa ->.iop

Goals

Add Instruction Fetches
Instruction Compression
Instruction Encoding

groq © 2023 Groq, Inc. | Grog Al Workshop

[10)

p= >

c c

D o D

> = >

a > :C) el a

E= 2 = o =

S £ o £ S

> % o g >

)

£ > &

+— +—

[O

> >
| Instruction Control Unit I
PCle | Ie))

\

Grog Public

24

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Parallelism

320 element SIMD units

VXM

MXM SXM

Vector-Vector Matrix-Vector / Data
Operations Matrix-Matrix Reshapes
Multiply

groq © 2023 Groq, Inc. | Grog Al Workshop

Multiple Functional Units

(Input / Output

Q@ Q@

5 5
= =
|3 Bl E
>z 2 23
= [= c (= =
S S 2 5 < S S
] B Q = e 5]
201sll51&||51]l3]l2

Q 3] Q
s 2|25 %
= < < =
S| & g2

2 2

a a

Instruction Control Unit

N

PCle

Input / Output

\

Multiple GrogChips

Groq Public

26

Parallelism : Multi-Chip

320 element SIMD units

VXM

MXM SXM
Vector-Vector Matrix-Vector / Data
Operations Matrix-Matrix Reshapes
Multiply

groq © 2023 Groq, Inc. | Grog Al Workshop

Multiple Functional Units

N
(Input / Output \
Q@ Q@
S F}
= =
|3 Bl E
>z 2 23
2| §|l2/|5||l2||§&]| 2
= = Q = e B =
201sll51&||51]l3]l2
Q 3] Q
x5 =2]1&]=2]|%]]x
5 < < s
S| & EREE
2 2
7] 7]
| Instruction Control Unit |
k PCle | | Input / Output)
/

\

Multiple GrogChips

Groq Public

27

Compiler C2C Abstraction

Synchronous Chip-to-Chip communication DEST TSP SOURCE TSP
Chip-to-Chip (C2C) protocol enables Local
synchronous communication across all TSPs in Recv(X) << Send(X) SRAM
a network X ‘ Memory
Compiler knows exact cycle data Use(X) Read(X) X
should be sent from one TSP and
cycle N+L cycle N

received at another

groq" © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 28

Inter Op Partitioning

Dev O

LS b ———
. . LBT, |_C'_, e Time

D |

Dev 1

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

INntra Op Partitioning

groq

program
A
|—|—|
B C

© 2023 Groq, Inc. | Grog Al Workshop

Dev 0

(A]

Dev 1

(A]

[c]
[B1
i

Time

Groqg Public 30

Transformer

Output
Probabilities

Add & Norm

Add & Norm

& No Multi-Head
Feed Attention
Forward Nx
Nix Add & Norm
Add & Norm Wiskea
Multi-Head Multi-Head
Attention Attention
A) A)

& J U —
Positional D @ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

groq" © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 31

Transformers : Inter Op Partitioning

groq © 2023 Grogq, Inc. | Grog Al Workshop

Transformers

Dev N+

Inter Op Partitioning

Dev N

Dev N-1

groq © 2023 Grogq, Inc. | Grog Al Workshop

LLama 65B FFEN : Intra Op Partitioning

From Attention
[1,1,8192]

I
v v

FFN MatMul 0 FFN MatMul 1
Weight [8192,22016] Weight [8192,22016]

Activation Function
| [1,1,22016]

[11,22016]
Eltwise Multiply

FFN MatMul 2
Weight [22016,8192]

v

Output [1,1,8192]

groq" © 2023 Groq, Inc. | Grog Al Workshop

8x

8x

8x

8x

From Attention

[1,1,8192]
FFN MatMul 0 FFN MatMul 1
Weight [8192,2752] Weight [8192,2752]
Activation Function

Eltwise Multiply

FFN MatMul 2

Weight [2752,8192]

C2C Reduce

Output [1,1,8192]

Grog Public 34

What's Coming? S

groq © 2023 Groq, Inc. | Grog Al Workshop

Future Improvements and Features

Faster Compiles
Native Frontends
Power Aware Scheduling

groq" © 2023 Groq, Inc. | Grog Al Workshop

Groq Public

36

groq

Thank You!
plassen@grog.com

Crog Runtime SEEER

Aviv Weinstein
Systems Software Engineer

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public 38

Grog Runtime

AGENDA

Grog Runtime HW/SW Architecture
Interacting with Grog Runtime as a
Developer

Deeper Dive on Running Inferences
on GrogChip!

groq © 2023 Groq, Inc. | Grog Al Workshop

Grog Public 39

Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram

A higher level software interface that runs on a host CPU.
The runtime communicates to Groq Hardware using the Groq Driver, over a PCle interface
Deals with information inside of our compiled .iop files

| Grog Compiler |—> .aa —>| Groq Assembler |—> Jiop

I 4
Compile Time
Runtime |
Al Grog Runtime
Application Groq Driver
Host CPU . PCle " Groq Hardware
(GrogCard, GrogNode, GrogRack)

groq © 2023 Groq, Inc. | Grog Al Workshop Grog Public 40

Grog Runtime HW/SW Architecture

Simplified GrogFlow Software to Hardware Diagram

groq

© 2023 Grogq, Inc. | Grog Al Workshop

GrogFlow™

O PyTorch 1F A Keras

!

€) ONNX

!
=

MLIR

Grog Compiler

!

Grog Assembler

!

Grog Runtime

!

Groqg Hardware
(GrogCard, GrogNode, GrogRack)

Groq Public

Grog Runtime HW/SW Architecture

Simplified GrogFlow Software to Hardware Diagram

O PyTorch 1F A Keras
!

€) ONNX

!
=

MLIR
Grog Compiler

!

Grog Assembler

!

Grog Runtime

!

Groqg Hardware
(GrogCard, GrogNode, GrogRack)

GrogFlow™

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram

Y

Grog Assembler

Y

dop

Groqg Compiler >~ .ad
L 7
Compile Time
Runtime
Al Grog Runtime
Application Groq Driver

Host CPU

PCle

groq © 2023 Groq, Inc. | Grog Al Workshop

Groq Hardware

(GrogCard, GrogNode, GrogRack)

Grog Public

Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
- Groqg Assembler '
L 7

v
Q
Q
y

Grog Compiler

Compile Time

Runtime

Al
Application

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Grog Runtime HW/SW Architecture

Grog Runtime

Higher level software interface to Grog hardware
Has an “idea” of what an .iop is and contains.
Runtime includes code for:
Parsing IOP files
Initializing the chip
Allocating input and output host buffers
Loading and invoking programs
C++ and Python based implementations.

groq © 2023 Groq, Inc. | Grog Al Workshop

Groqg Public 45

Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
Grog Assembler '

Grog Compiler

Compile Time

Runtime

Al
Application

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Grog Runtime HW/SW Architecture

Input/Output Package File (.iop) Format

Grog's representation of an executable for GrogChip
Emitted by the Grog Assembler/Grog Compiler
Protobuf container that contains information on:

Model instructions and weights

Instructions on how to load the GrogqChip's SRAM.

Model Input/Output tensor information

Debug Metadata

Compile Time —r-— Runtime

groq © 2023 Groq, Inc. | Grog Al Workshop

Groqg Public 47

Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
Grog Assembler i

Grog Compiler

Compile Time

Runtime

Al
Application

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Grog Runtime HW/SW Architecture

Groq Driver

Low-level PCle hardware interface
DMA data transfers to/from GrogChip
CSR reads/writes

Based on a simple Linux user-space VFIO driver _
Lowest level between how the host CPU and Groqg LPU

communicate with each other

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 49

Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
Grog Assembler i

Grog Compiler

Compile Time

Runtime

Al
Application

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Grog Runtime HW/SW Architecture

Groq Hardware

GrogCard
1Groqg LPU Chip
GrogNode
8 GroqgCards per GrogNode
GrogRack
9 GrogNodes per GrogRack
Total of 72 GroqChip processors

groq" © 2023 Groq, Inc. | Grog Al Workshop

GroqCard™

groq

GrogqNode™

GrogRack™

Groqg Public 51

Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
- Groqg Assembler i
L 7

v
Q
Q
y

Grog Compiler

Compile Time

Runtime

Al
Application

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Grog Runtime HW/SW Architecture

Host CPU and PCle Connection

Host CPU

PCle

Gen 4x16

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 53

Grog Runtime HW/SW Architecture

Simplified Grog Runtime Diagram
. Grog Assembler i
L 7
Compile Time

Runtime

v
Q
Q
y

Grog Compiler

Al
Application

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

INnteracting with Grog

Runtime as a Developer i

INnteracting with Grog Runtime as a Developer

Groqg runtimes available to developers

oroq

TSPRunner
Python
. >
Runtime API)
C++ Driver
User Space

© 2023 Groq, Inc. | Grog Al Workshop

GroqgCard

Hardware

C++ Runtime
API

Grog Public 56

INnteracting with Grog Runtime as a Developer

Groqg runtimes available to developers

; -

C++ Driver
I ______ User Space
VFIO Driver
Kernel Space
""""""""" PCle 777
Hardware
groqh © 2023 Groq, Inc. | Grog Al Workshop Groqcard Groqg Public 57

INnteracting with Grog Runtime as a Developer

Groq runtimes split between Python and C++

Python C++
C++ Driver
I ________ User Space
VFIO Driver
Kernel Space
""""""""" PCle 777
Hardware
groqh © 2023 Groq, Inc. | Grog Al Workshop Groqcard W Groq Public 58

INnteracting with Grog Runtime as a Developer

Ease of use oriented Groqg runtimes

; -

C++ Driver
I ______ User Space
VFIO Driver
Kernel Space
""""""""" PCle 777
Hardware
groqh © 2023 Groq, Inc. | Grog Al Workshop Groqcard Groqg Public 59

INnteracting with Grog Runtime as a Developer

Performance oriented Groq runtimes

; =

C++ Driver
I ______ User Space
VFIO Driver
Kernel Space
""""""""" PCle 777
Hardware
groqh © 2023 Groq, Inc. | Grog Al Workshop Groqcard Groqg Public 60

Deeper Dive on Running

INferences on 3

GrogChip! SEETEIEEE ISP

Deeper Dive on Running Inferences on a GrogChip!

Moving Data between Host CPU and Groq LPU

Input Buf

Output Buf

Host Memory

groq © 2023 Groq, Inc. | Grog Al Workshop

PCle

Groq Public

62

Deeper Dive on Running Inferences on a GrogChip!

DMA descriptor maps host memory buffer

Input Buf

DMA descriptor

7D

groq © 2023 Groq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle

Groq Public

63

Deeper Dive on Running Inferences on a GrogChip!

Driver writes descriptor address to PCle RX BAR

Input Buf

DMA descriptor

7D

groq © 2023 Groq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle

Groq Public

64

Deeper Dive on Running Inferences on a GrogChip!

PCle block retrieves descriptor/underlying buffer data, fills FIFO

Input Buf

DMA descriptor

7D

groq © 2023 Groq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle

Groq Public

65

Inferences on Grog LPU

PCle block retrieves descriptor/underlying buffer data, fills FIFO

Input Buf

DMA descriptor

7D

groq © 2023 Groq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle

Groqg Public 66

Deeper Dive on Running Inferences on a GrogChip!

I/O harness fills all of SRAM inputs

Input Buf

Output Buf

7D

Host Memory

groq © 2023 Groq, Inc. | Grog Al Workshop

PCle

Groq Public 67

Deeper Dive on Running Inferences on a GrogChip!

Moving Data between Host CPU and Groq LPU

Input Buf

DMA descriptor

7D

groq © 2023 Groq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle

Groqg Public 68

Deeper Dive on Running Inferences on a GrogChip!

Initiate core compute and PCle TX ICU reads vectors from SRAM and pushes to FIFO

Input Buf

DMA descriptor

7D

groq © 2023 Groq, Inc. | Grog Al Workshop

Output Buf

Host Memory

PCle

O

Groq Public

69

Deeper Dive on Running Inferences on a GrogChip!

Driver writes descriptor address to PCle TX BAR

Input Buf

DMA descriptor

Output Buf

Host Memory

groq © 2023 Groq, Inc. | Grog Al Workshop

PCle

Groqg Public 70

Deeper Dive on Running Inferences on a GrogChip!

PCle block drains FIFO, writes results back to host memory

Input Buf

DMA descriptor

Output Buf

-7D

Host Memory

groq © 2023 Groq, Inc. | Grog Al Workshop

PCle

Groq Public

71

groq

Thank You!
aweinstein@grog.com

Accelerating LLMs with

the Grog Language

proceSS|ﬂg Unit_l_l\/l (LDU) :f'::;::f:::::fféééf:_

Peter Lillian
Machine Learning Engineer

Accelerating LLMs
with the Grog LPU

AGENDA

LLMs

Grog Demo

The Transformer

How Our Inference is so Fast
Summary and Conclusions

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public 74

LLMs: The next Revolution in Computing

Forbes
Exhibit 2: 5 days from launch ChatGPT reaches Tmn users vs 14 Salesforce Debuts Finstein Introducing Microsoft Dynamics 365 Copilot, the
~pT ~ P ke R S world's first copilot in both CRM and ERP, that
days for TikTok F{!*g@h”lmdmﬂm brings next-generation Al to every line of business
Daily unique visits to ChatGPT and cumulative TikTok downloads after SUSINESSES Var 6202 | G Lans U s Acatos o Pt
their launches Hon
[
3,500,000
e Daily Unique Visits (ChatGPT)* Cumulative TikTok Downloads™

3,000,000

2,500,000

2,000,000

1,500,000

The company also partnered with OpenAl to create a ChatGPT app for
Slack, which Salesforce owns.
1,000,000
Source: forbes.com
Today, we're announcing the next generation of Al product updates across our business applications
ortfolio, including the launch of the new Microsoft Dynamics 365 Copilot - providing interactive, Al-powered
500,000 CarMax drives business value with GPT35 St s s ncns — ’
0

Source: blogs.microsoft.com

Day1
Day2
Day3
Day4
Day5
Day6
Day7
Day8
Day9

Day10
Day 11
Day12
Day13
Day14
Day15

Source: BofA Global Research, *Similarweb, **SensorTower

BofA GLOBAL RESEARCH

groq" © 2023 Groq, Inc. | Grog Al Workshop

Groq Public

75

https://www.forbes.com/sites/richardnieva/2023/03/07/salesforce-einstein-gpt-slack/?sh=675b9b5328de
https://blogs.microsoft.com/blog/2023/03/06/introducing-microsoft-dynamics-365-copilot/

LLMs: The next Revolution in Computing
The Graphical User Interface (GUI

Hanual Browser

Hanual Page

The current nanual page is: xset(x).

XSET(1) XSET(1)

xset - user preference utility for X

xset [-display display] [-b] [b on/off] [b [volume [pitch [duration]]]
[[-1be] [-c] [c on/off] [c [volume]] [[+-]dpms] [dpms standby [suspend
[off]]] [dpms force standby/suspend/off/on] [[(-+]fp[-+=
patal,pathl,. .. 11] [fp default] [fp rehash] [[-]led [integer]] [led
on/off] [mlovse] laccel mult|/accel div] [threstold]]] [mlousel
default] [p pixel color] [[-]r [keycode]] [r on/off] [r rate delay
[rate]] [s [length [period]]] [s blank/noblank] [s expose/noexpose] [s
on/off] [s default] [s activate] [s reset] [q]

DESCRIPTION

This program is used to set various user preference options of the dis-
play.

OPTIONS

-display display
This option specifies the server to use; see X(7)

b The b option controls hell volume, pitch and duration. This
option accepts up to three mumerical parameters, a preceding
dash(-), or a ‘on/off' flag. If no parameters are given, or
the 'on' flag is used, the system defaults will be used. If
the dash or 'off' are given, the bell will he turned off. If
only one numerical parameter is given, the bell volume will he
set to that value, as a percentage of its maximm. Likewise,
the second mumerical parameter specifies the bell pitch, in
hertz, and the third mumerical parameter specifies the duration
in milliseconds. Note that not all hardvare can vary the hell
characteristics. X server will set the characteristics of

e bell as closely as it can to the user's specifications

be The be option controls bug compatibility mode in the server, if

reenshot.

groq

© 2023 Groq, Inc. | Grog Al Workshop

Activities

Weather

GbteOftice imp

Grog Public

76

LLMs: The Next Revolution in Computing

The Graphical User Interface (GUI) The Internet

W

groq" © 2023 Groq, Inc. | Grog Al Workshop Groq Public 77

Demo Time

groqm CONTINUE TO GROQ.COM

Enter prompt here >

Model: Llama 2 7B/2048 Total Requests: 116705

Terms of Service and Privacy Policy. © Groq Inc. 2023

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public 78

What is a Language Model?

I'm hungry, I'm going to get something to ...

groq" © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 79

What is a Language Model?

I'm hungry, I'm going to get something to ...

Language model

I'm hungry, I'm going to get something to eat.

Input sequence Prediction

groq © 2023 Groq, Inc. | Grog Al Workshop

Examples of language models:
e Translation
e Prediction of next word(s) for
given input sequence

Challenge:

e Going word by word or with
short sequences results in
low quality

e Extreme compute complexity
for longer sequences

e \Various approachesto
increase compute efficiency:
RNNs, LSTMs, Transformers

Grog Public 80

Transformers and Attention

Qutput
Probabilities

I'm hungry, I'm going to get something to ...
[F
For?/ve:rd
Add & N
Language model —{(Add&Nom) Multi-.H:ar:
Feed Attention
Forward) Nx
I'm hungry, I'm going to get something to eat. Nx ,_.[AdeNorm] “"j:s-fe‘;“mi |
Multi-Head Multi-Head
. . Attention Attention
Input sequence Prediction Atk AL
1 J U —)
Positional D Positional
Encoding & Encoding
Input Output
[Embedding Embedding l
Inputs Outputs

(shifted right)

Vaswani et.al 2017 “Attention is all you need” arXiv:1706.03762

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 81

Transformers and Attention

Qutput
Probabilities

I'm hungry, I'm going to get something to ...

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Language model —~(Add& Norm)

Feed
Forward

—

I'm , 'm going to something to eat.

Prediction

Input sequence

QK™
vk

Attention(Q, K, V') = softmax(1%

Nx | —(TAdd & Norm)

7T Nx
| Add & Norm :

Masked
Multi-Head Multi-Head
Attention Attention
t it
1 J —)
Positional Positional
Encod P @ i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

Vaswani et.al 2017 “Attention is all you need” arXiv:1706.03762

groq

© 2023 Groq, Inc. | Grog Al Workshop

(shifted right)

Grog Public

Multi-Headed Attention is Key

| LINEAR

|

| CONCAT

T

| MATMUL

[sone

1

| MATMUL

Pt
Q |

Add & Norm

3

Feed Forward

Add & Norm

Multi-Headed

Attention

| LINEAR | |

LINEAR

LINEAR

!

!

f

groq © 2023 Groq, Inc. | Grog Al Workshop

Input Embedding

!

SoftMax

i

Linear

f

Add & Norm

[

Feed Forward

V

Add & Norm

f

Multi-Headed Attention

r

| Add &Norm

f

Multi-Headed Attention

(O—8

Output Embedding

!

Multi-Headed Attention is Key

LINEAR

|

| CONCAT |

tt

groq © 2023 Groq, Inc. | Grog Al Workshop

SoftMax

i

Linear

f

Add & Norm

[

Feed Forward

Add & Norm

3

Feed Forward

Add & Norm

Multi-Headed

Attention

Input Embedding

!

V

Add & Norm

f

Multi-Headed Attention

r

| Add &Norm

f

Multi-Headed Attention

D

Output Embedding

!

Groq Public

Core Operation
2> Matrix-Matrix

LINEAR LINEAR LINEAR

Input, , [4x3] W, [3x3] Q,,, [4x3]
How [T 1]] [T T
ae (11 3 H = | OO
you [T T o LT 1]
2 L1 W, B3x3] (T

B E ﬁ K., [4x3]
- [T T
. (1T
(111
Vi, [4x3]
[T T
Resultant data (Q,,, K;,;» V) @nd [T
compute all directly proportional to [T 1]
input size (Sequence Length) [T 11

Groqg Public 85

Core Operation Q,, [4x3) e —
> Matrix-Matrix /e ﬁﬁﬁﬁ = | [0
— (LT
T (TTT]

How are you ?

How | 98 10 70 60

are | 31 89 54 32

you | 67 54 91 67 Resultant data

and compute all
Quadratic to input size
(Sequence Length)

Groqg Public 86

Decoder: Avoid Quadratic Scaling (KV Cache)

Text
Prediction

Blue: Attention Computation per Head THE GENERAL OBSERVATION
plus Feed Forward / Norm

m PreFill is easy, as it's just’

y Complexity and size scales linearly with Matmuls
@ parameter count

Feed Eonvand Large MatMuls Large models get expensive
) linearly, but context

128 —

lengths get expensive
quadratically

o This can make
Red: KV Cache outputs inefficient in

o Naive Complexity & size squares those conditions
quadratically with context length

Text & Position Embed

Single input vector can be computed
against matrix, and accumulated

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 87

KV Cache
2 Vector-Matrix

LINEAR LINEAR LINEAR

How

are

you

Intermediate

results already Wo [3x3]
computed in]
last sequence] E ﬁ
W, [3x3]
Input _ [1x3] : —
EEE 5 =
W [3x3]
Significantly less
compute / data
Constant Proportional
complexity VS to Input Size
Q.. [1x3] Q. [4x3]

Q__ [1x3]

new

[T 1]

K [1x3]

new

[T 1]

[3x3]

K(:ache

[T 1]
[T 1]
[T 1]

V_ [1x3]

new

[T 1]

3x3]

Vcache [

[T 1]
[T 1]
[T 1]

Groqg Public 88

KV Cach Q.. [1x3 K [3xd
aV@c?t%r—eMatrix e & ﬁﬁ[ﬁ]ﬁ — —

Koy (1531 Ky 13531 T

cache

are you ? |

MATMUL

Linear vs Quadratic
COMPLEXITY

Groqg Public 89

Why Grog LPUs are suitable for running LLMs

encoder
layer n-1 The large matrix multiplication operations are
effectively mapped to MXM
‘ Running LLMs is a serial problem - it requires
l generating the first 99 tokens before the 100th
attention one (auto-regressive behaviour). This requires
| a lot of weights loading which is accelerated
encoder L+ add & norm by LPU’s high SRAM bandwidth
layer n l
feed forward
'
— add & norm
encoder
layer n+1

groq" © 2023 Groq, Inc. | Grog Al Workshop

Grog Public 90

Grog’s LLM Performance Roadmap
to 300 tokens/sec/user on Llama-2 70B

July 18th
Model Released

Llama-2 70B
released

groq" © 2023 Groq, Inc. | Grog Al Workshop

July 24th

Model compiling 5 days
after 1st download

10
tokens/s/user
initial
performance

July 29th

Performance 5 days
after 1st compile

65
tokens/s/user

Aug 3rd

Performance 10 days
after 1st compile

100
tokens/s/user

Late September

Continuing SOTA
Latency & Throughput
Performance

300
tokens/s/user

Groq Public

How LLM architecture impacts development flow

Require multiple LPUs: we run Llama-2 70B (4K sequence length) on 528 chips
KV cache pre-allocated to fit the longest sequence

Manual partitioning

Weights casted to float8 and activations to floatl6 for fitability and performance

groq" © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 92

General Grog LLM Development Flow

Modify PyTorch Model
Export ONNX Model

Convert ONNX Model
from fp32 to fp8/fp16
Decoder Partition

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Why up to 5 days?

Day 1 Day 2 Day 3 Day 4 Day 5
Remove Update data Split graph into Map decoders to | Update host code
vendor-specific types to fp8 and individual specific racks and run on
partitioning code | fp16, and export decoders devices
and dynamic to ONNX
portions of code

PyTorch Adjustments

Decoder Partition

© 2023 Groq, Inc. | Grog Al Workshop Groq Public

groq

PyTorch Modifications

We intend to share source code detailing the modifications below

Original Llama 2 models (see https:/ai.meta.com/llama/)
Agree to license and request access (see
https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
Follow download instructions (see https:/github.com/facebookresearch/llama)
Modifications to model
Remove any data movement to GPUs (eg .cuda(), sharded linear layers)
Remove dynamically allocated structures (KV cache, add state via index)
Update mask calculations (need to ignore empty cache values)
Replace any non-pytorch ops with their equivalent

groq © 2023 Groq, Inc. | Grog Al Workshop

Groq Public

95

https://ai.meta.com/llama/
https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://github.com/facebookresearch/llama

Convert Numerics and Export ONNX

Export ONNX, and specify desired input shapes
Run onnx shape inference and optimisations on it (standard procedure)
Convert to FP16, whilst ignoring numerically sensitive ops
Meta already did this in their original implementation
Keep Softmayx, rotational embedding, and RMSNorm in FP32
Convert FP16 matmul weights to FP8 (optimisation to reduce number of LPUs needed)

Partition ONNX

Steps 3 and 4 will be handled by the compiler soon via flags

groq" © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Compilation

Example: Llama-2 7B/2048 Targeting a Single GrogRack

Compilation may use up to 200GB of memory and should complete in 10s of minutes
Compiler flags shown below are for an internal compiler build, some may become default compiler passes

grog-compiler --log-level=trace --save-stats ./compile/stats.json \
--effort=standard --perf-based-intra=False --weight-loading-bandwidth=8 --no-intra-op-io-split \
--multinode-relocate-io=on --intra-op-min-elements-partition=256 --max-contiguous-buffer-size=513 \
--persistent-intra-slices=8 --persistent-intra-axes=2 --c2c-slice-bubbling=eager \
--allocate-contiguous-before-persistent --persistent-fp8 --matmul-f8-weight \
--multichip=RTO9 A14 72 CHIP --intra-op --no-multichip-pipelining

-0 ./compile/program model.onnx

groq © 2023 Groq, Inc. | Grog Al Workshop

Grog Public 97

Runtime Execution

Example: Llama-2 7B/2048 Targeting a Single GrogRack

Running on the ALCF GrogRack
General Runtime Flow:
Encoding of input prompt
Specialized TSPRunner runtime object (LLamaTSPRunner)

Output token generation loop
Message passing interface (MPI)

Decoding of output tokens
Error Handling
THIS IS A DEMO
Not production grade code or highest performance with Groq Hardware

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 98

L lama-2 7B/2048 Demo Video

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 99

https://docs.google.com/file/d/1tGGF9yrQ1tKszGllTEF_cDGrnMKWqcSb/preview

L lama-2 7B/2048 Demo Video

Optimizations made for public facing demo

b$ grog-python groq_llama2_7b.py -p "List out 5 fruits."”

Beginning computation on prompt...

Computation finished!

Prediction #1: List out 5 fruits. Here are 5 fruits:
Apple

Banana

Orange

Mango

Pineapple

groq © 2023 Groq, Inc. | Grog Al Workshop Grog Public 100

Accelerating LLMs
with the Grog LPU

RECAP

LLMs are the next revolution in
computing

LPUs enable fast inference

Llama-2 7B is available on your
GrogRack today in partnership with
the ALCF

Grog Public 101

groq © 2023 Groq, Inc. | Grog Al Workshop

groq

Thank You!
plillian@groqg.com

GrogWare™ Suite

Developer Tools SEETEIEEE ISP

Hatice Ozen
Customer Applications Engineer

GrogWare™ Suite
Developer Tools

AGENDA

Overview of GrogWare™ Suite
Components of GrogWare™ Suite
GrogView™ Walkthrough

IOP File Utility Walkthrough

TSP Control Utility Walkthrough
Available Resources

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 104

What is GrogWare™ Suite?

Everything you need for development to connect you, our software, and software-defined Grog hardware

You Groq Software Software-defined
Groqg Hardware

Hardware is the New Software

groq © 2023 Groq, Inc. | Grog Al Workshop

Groqg Public 105

Groqg Developer
Tools & Grog
Runtime

“Grog turned around our
model in under a day
with orders of magnitude
better performance over
the NVIDIA A100 GPU,
and Intel took a month to
get us any results.”

- Director of Research & Development (ML)
Risk Calculation/Analytics Software Firm

© 2023 Groq, Inc. | Grog Al Workshop

groq

O PyTorch 1F .ﬂn
é’ Caffe2 ..and more!

Custom
Applications

GrogFLow™

S

MLIR

Groq API

Groq Compiler

GroqView™

IOP File Utility
(iop-utils)

Groqg Assembler

grog-devtools
Grog Runtime TSP Control | |
| Utility :
- (tsp-ctl) :
GroqChip™)
groq-runtime :

Grog Public 106

Grog Developer Tools Package

For development using Groq software on any development machine

€ ONNX
... GrogView™
. Grog API
: 3 M?R : IOP File Utility
: LI6_ (iop-utils)
e Grog™ Compiler <
O
............................. I

Grog Assembler

groq © 2023 Groq, Inc. | Grog Al Workshop

Groq Public

107

Grog Runtime Package

Everything needed to program, operate, and execute your workloads on Groq hardware

Grog Runtime

\ 4

GrogChip™

TSP Control Utility
(tsp-ctl)

groq

© 2023 Grogq, Inc. | Grog Al Workshop

Groq Public

08

GrogWare™ Suite

O PyTorch 1F .c,.

<) é Caffe? ..andmore!

Custom
Applications

€ ONNX
v

GrogFLow™

®

MLIR

Groq Compiler

Groq API

R rC— T SO — 4 ____________________________ :

GroqView"

IOP File Utility
(iop-utils)

| Groq Assembler

groqg-devtools i

' l '
I
|
'
|
|

'

3 Grog Runtime
1 !
i l GroqChip™

TSP Control
Utility
(tsp-ctl)

groq © 2023 Groq, Inc. | Grog Al Workshop

grog-runtime |

GroqgView

IOP File
Utility

TSP
Control
Utility

A Diverse Suite of
Development Tools

GroqgView" Profiler provides visualization
of the chip’s compute and memory usage
at compile time

IOP File Utility extracts information about
your model’s files, including metadata such
as inputs, outputs, number of cycles for
execution, and utilization

TSP Control Utility is the command line
interface designed for easy and efficient
communication with Groq devices in
your system

Grog Public 109

GrogView Profiler

The power of data orchestration

t £ — — =
s X
| =
] £
———)
_ S
“ 8"
“ ° H=r
I ;
I (o]
r = [)
— n
| o , e
X T L
I =)
” T ! ,A = x
b rn.HH.. € EmEENE W
o [H
™ u = ™ »_mn
T [L) LA ! 11
= H e
W s e
. :
T T
‘mEm w mN

vmn [
3 =
t
u-—ulllIH_l_,"_ am
gtne " nems |
ﬂﬂ 2 =y _+I
,n_v.W.,lllllll..f 1+ ,
= — M
i — w
, e S ”
==
TR
.\-Eﬂ.
L L | ‘ “
" et 8
==- =

Groq Public 110

© 2023 Grogq, Inc. | Grog Al Workshop

groq

GrogView™ Profiler

ResNet50 Max Pooling .
Layer Example 'Read Read Read.Read Groqvlew

neg i i Provides a detailed performance report and
visualization of the entire chip’'s compute and

X sat
e I IR memory usage for the whole Grog API or Groq
603 | T Compiler program at compile time

+sak

!
X st .
Ly These reports include:
/ Data movement across

Compute Activity over time
Stream flow

Data Concurrency
Performance and Occupancy

No need to run on actual hardware.

streams, memory and
functional units such as
SXM and VXM

Write—Write™ Wrife _ Write

GrogView eliminates the slow, painful dynamic profiling process for true developer velocity

groq © 2023 Groq, Inc. | Grog Al Workshop Grog Public 1M

Build a GrogView Visualization

The following slides include steps (part of the live tutorial) for building a GroqView, a visualization and profiler tool that is launched in

your web browser.

(base) hozen@apps-srv2:~$% conda activate groqflow
WARNING: overwriting environment variables set in the machine

overwriting variable ['PYTHONPATH']
(grogflow) hozen@apps-srv2:~$

Activate your GrogFlow
environment

Grog Public 112

groq © 2023 Groq, Inc. | Grog Al Workshop

Build a GrogView Visualization

Today'’s live tutorial uses the Pytorch hello_world.py example available on GitHub.

When calling the grogit() (grogflow) hozen@apps-srv2: $ vim hello_world.py
function for your model, set
the grogview argument to 46 # Build model .
True to includeGrquiew 47 grog_model = groqit(pytorch_model, inputs,
. . . . 43 build_name="hello_pytorch_world", groqview=True)
files in the build (line). 49 groq_model.grogview()

To open the visualization,
take the resulting model
instance and call the
grogview() method on it (line

7).

groq © 2023 Groq, Inc. | Grog Al Workshop Grog Public 113

https://github.com/groq/groqflow/blob/main/examples/pytorch/hello_world.py

Build a GrogView Visualization

Today'’s live tutorial uses the Pytorch hello_world.py example available on GitHub.

Execute or build (by (grogflow) hozen@apps-srv2: $ python3.10
including the hello_world.py --build
argument) your model.
Woohoo! Build "hello pytorch world" (build name auto-selected) found in cache.

Open your web browser and Loading it!
copy-paste the GrogView ‘
provided for your model. Preparing profiling data 'output_bind'.

Note: You may need to Ready!

create an SSH tunnel
for the web browser to
work. For example, for

Open your web browser:

http://localhost:8439

this tutorial, | opened a To quit: <Ctrl-c>
new terminal and ran

8439:1ocalhost:8439
hozen@apps - srv2jefSXie]LS

reloading the browser.

groq © 2023 Grogq, Inc. | Grog Al Workshop Grog Public T4

https://github.com/groq/groqflow/blob/main/examples/pytorch/hello_world.py

Once you’ve launched GroqgView in a web browser,
you'll see the following information:

Na\/lgatlﬁg Groq\/lew Settings (top left)

Details of GrogView Features e Switch between Stats, Schedule, Container, and
Streams modes.

groq- . . e The active mode appears as brighter text.
. v . " : " . W Find
Settlngi ' ‘ .’ . (@ show auto-named containers Program (bOttom /eft)
W%MI}_‘I ¢ 2 _ Collzpse Al e Shows model name loaded in GrogView and the
e e o ot total cycle time for the model.

@ hide container outline
(@ hide minimap

pihis bk oL N ° When in Schedule mode and a specific

« loc(unknown)

et ClAGY ifalzs instruction is selected, more information is
provided here, such as instruction type, cycle
count, and streams used.

Maximize Height

Show Settings ¥

Program

Outline (right side)
° Visible in Schedule, Container, and Streams
modes.
° Shows the hierarchy of the program.

name: output_bind

Select device

Main Window (middle)
e Thisisthe main window and is updated based on

- :
the mode selected.

The above example is in Schedule mode! ° Depending on the mode, this pane will change.

groq" © 2023 Groq, Inc. | Grog Al Workshop

Visible in the Schedule, Container, and Streams mode and
shows the organizational structure of the program.

Navigating GrogView Collapse Al

. . ° Fully collapses outling, displaying root container.
OUtl Ine View ° Each nested container can then be expanded and
collapsed individually.
° A container with no child containers will have a bullet

- point vs. a right arrow for a container with children.

® show auto-named containers

e —— Find By Name
ollapse . N . . .

i) The “Find” field allows for filtering on a particular
container name from within the outline.

v root
) Textual matches will light up.

« loc("GroginputPacking”)
« loc("|fc|MatMul”(*|fc|MatMul®))

« loc(unknown) o
* loclfisedlleiAd ATl "Intfalzer_fe.las7) Foc.us orl,—lgsenr'i:g;ng\’/-er a container name focuses on that
container, updating what is in the timeline view.

Column Resizing
° Resize columns by grabbing vertical border of the
Settings/Program pane (far left) or Outline pane (far right).

Lock-in View
° In Container mode, clicking on a container name locks in
the view of that particular container. You can then move
the cursor elsewhere on the screen, and the locked-in
container will continue to be the focus.
The above example is in Container mode! ° If the mode is switched to Streams, the instruction from
that selected container will be highlighted.
° To unlock the focus on a container, there are 2 options:
o Re-click on the same container name.
o Move the mouse away and (within the Outline
. section of the screen), click away from any
groq © 2023 Groq, Inc. | Grog Al Workshop container name.

Navigating GrogView

Stats Mode

Program Duration: 158 cycles

R izaton

50

45

40

35

30

utilization (%)

20

groq

25 .

50 100 150

cycle

The above example is in Stats, Utilization mode!

© 2023 Groq, Inc. | Grog Al Workshop

~e- MXMW
- SXMW
- low

- MEMW

MEM E

« IOE
« SXME
« MXME

Stats Mode displays statistics about the program
including number of cycles required to complete,
instruction count, utilization of hardware and power
profile.

Utilization
° Moving average of the numbers of instructions
that recently occurred.
° For example, if MEM E shows 20% utilization, then
20% of the recent cycles had a read or write
instruction.

Navigating GrogView

Stats Mode

Program Duration: 158 cycles
Plots: Pover]

== dynamic

275
leakage

power (W)

cycle

The above example is in Stats, Power mode!

groq © 2023 Groq, Inc. | Grog Al Workshop

Stats Mode displays statistics about the program
including number of cycles required to complete,
instruction count, utilization of hardware and power
profile.

Power
e The Power graph uses a leakage power that
assumes the chip is kept at 65°C.
e The dynamic power is calculated based on the
instruction’s known charge and dissipation
power.

Stats Mode displays statistics about the program
. . . including number of cycles required to complete,
N a\/l g a t | n g G roq \/| e\/\/ instruction count, utilization of hardware and power
profile.
Stats Mode

Instructions (scroll down)
° Instructions breakdown lists all instructions with
their group identified.
° Each time an instruction occurs, the count is
increased.
e The percentage is the count divided by the total
number of instructions.

Instructions (total: 49)

Group 1 InsnType Count Percentage
Vxm 1 2.04
Vxm 1 2.04
Vxm 1 2.04
Sxm Accumulate 1 2.04
Sxm PermShift 4 8.16
Mxm Mxminsn 2 4.08
Mxm LWB 8 16.33
Mxm w 2 4.08
Mem Read 21 42.86
Mem Write 8 16.33

_ Tip: These metrics allow you to see what computations are
occurring in the GrogChip™ processor.

Using these metrics, you can optimize the program.
The above example is in Stats mode! For example, if the report showed that the majority of the program’s
instructions were for reads and writes to memory, a potential

: improvement could be to chain computation together to take
groq © 2023 Grog, Inc. | Grog Al Workshop advantage of the streaming architecture and boost performance.

Stats Mode displays statistics about the program
. . . including number of cycles required to complete,
N a\/l g a t | n g G roq \/l e\/\/ instruction count, utilization of hardware and power
profile.
Stats Mode

Stream Issues
° Stats Mode will show stream issues, if any.
= e Ifthere are no stream issues, “none” will be
- displayed.
- ° If there are stream issues, the page will show how
1 /'_ many sections have conflicts, the initial cycle
\L time for the conflict and how many cycles the
conflict occurs.

itilization (%)
@
8

Program

ame: output_bind | PEPESE Y, Nodeahitye

. 0 ° For example, the rightmost screenshot shows

ycle: 371

that there is one section of code that has stream
Stream Issues: 1 section conflicts starting at cycle 412 and lasting for an
'G‘f'H"Ty'pl . additional 23 cycles. If the cycle count is clicked, it
ga cycles: m will automatlc;ally upd{:\te the mode to Streams
o mode and adjust the time to when the stream
conflict starts.

Sxm Accumulate

Sxm Distributor
Sxm Permute

Sxm PermShift
Sxm SelectPermute
Sxm TransposeNull
Mxm Mxminsn

Mxm ABC

Mxm LWB

Mxm W

Mem Read 45
Mem Write 21

NOSNORRRD S SaN

Stream Issues: none

The above examples are in Stats mode!

groq © 2023 Groq, Inc. | Grog Al Workshop

Container Mode displays hierarchical organization and
duration of each container, where a container is a group of

N a \/l g a t | n g G ro q \/l e\/\/ instructions that occur together.

Groq programs are composed of instructions. To help
understand how instructions relate to each other, Groq
provides a mechanism for organizing instructions into
“containers.”

Container Mode

Timeline (middle screen)
° Provides container structure in time, represented as cycles
= and depicted along x-axis at top. The number on the far right

@ show auto-named containers

groq

Settings

is the final cycle of the program.

° Composed of nested rectangles, each representing a
GEEE i container. Outermost rectangle corresponds to root container

« loc("GroginputPacking®) .

- loc("flMathul"(fciMathur') of program. Nested rectangles represent its descendants.

« loc(unknown) .

« loc(fused[fclAddfelAdd") Intaizerfc.bias']) . The length of the rectangle corresponds to duration over
which instructions in container occur. The vertical placement

of a rectangle corresponds to the hierarchy of the container.

Collapse All

View Mode

2 H P2
<+

Stats Schadua Container Siraams

Palette
+ coral @ sunset @ camo

(@ Show All Containment

Program
output_bind
[Ull Select device |
3n

Outline (right side)
° Shows the hierarchical organization of the program as
containers.

Show All Containment (left side)
° Toggles the view from a container represented as a horizontal
line (default) to a colored rectangle.

Palette (left side)
° To better distinguish between the rectangles, customize the
color with the provided color palettes (coral, sunset, and
camo).

The above example is in Container mode!

groq" © 2023 Groq, Inc. | Grog Al Workshop

Navigating GrogView

Container Mode: Example of Focusing on a Container

Find

@ show auto-named containers

Collapse All

loc("GroginputPacking”)
loc("|fc|MatMul"("|fc|MatMul"))

loc(unknown)

loc(fused["|fc|Add"("|fc|Add")| “Initializer_fc.bias"])

oc'|fciMathul('fc|Mathtul)
]

Find
(@ show auto-named containers

Collapse Al

v root
« loc("GroginputPacking")
« loc("fc|MatMul*C'ffc|Mathul*))
« loc(unknown)

« loc(fused["|fc|Add"("|fclAdd")| "Initalizer_fc.bias])

groq

The above examples are in Container mode!

© 2023 Groq, Inc. | Grog Al Workshop

Container Mode displays hierarchical organization and
duration of each container, where a container is a group of
instructions that occur together.

Groq programs are composed of instructions. To help
understand how instructions relate to each other, Groq
provides a mechanism for organizing instructions into
“containers.”

. A container can be locked into view.

. As shown in the screenshot, hovering over or clicking on the
“root” container in the Outline brightens it while the rest dim.

. The highlighting helps focus on a specific container’s
organizational and temporal relationships.

o We can see where it lies in the nested structure, at
the fourth level of nesting, and with no containers
inside it.

. By double-clicking on a container’s rectangle or on its name

in the outline, you can restrict the view to show only that
container and its descendants.

. By double-clicking outside the outermost rectangle in the
view, you can expand the view to include the parent
container.

° For timing, we see the container's name

(Loc(“|fc|MatMul” (“|fc|MatMul™)) displayed above the
rectangle, and along the top we see O to 216 cycles for its
duration.

Navigating GrogView

Schedule Mode

& 5 v < «* © "

1L [PULLELLL L
T

vvvvvvv

Schedule Mode displays information for each
instruction in the program including when in time the
instruction is scheduled, how long it takes, and where
in the chip it occurs.

Timeline (middle)
° Shows when (which cycle) and where (GrogChip
functional unit) instructions are scheduled.
° Time is depicted along the vertical axis with cycle O at
the top and the last cycle of the program at the
bottom.

° The functional units of GroqChip from West to East are

shown at the top.

Minimap (right)
° The column on the far right is the minimap for the

Rl
L

I

The above example is in Schedule mode!

groq © 2023 Groq, Inc. | Grog Al Workshop

U T
TN
i
1
I . : ||,!{
—l
. ..|H
.....||,>'
RIFEL

program.

° The gray box indicates which section of the program is
currently in view in the main pane.

° To hide the minimap, click the checkbox in the
Settings pane.

Zoom
) Control (CTRL) + Scroll to zoom

Pan around Diagram
° Click and drag to pan around the Timeline.

Schedule Mode displays information for each instruction in the
program including when in time the instruction is scheduled, how

N a\/i g a tl n g G roq \/I e\/\/ long it takes, and where in the chip it occurs.

Individual Instructions

Schedule Mode: Exploring Individual Instructions

. When zoomed into a scheduled program (CTRL + Scroll to
zoom), the individual instructions are indicated as separate
‘ rectangles.
ALY @ @ . Each square represents a single instruction. The location of
$‘1’ 6$ the instruction provides both where on the chip the

instruction takes place and when in the cycle count it occurs.

Where the Instruction is Scheduled

B . There are squares of different colors in the vertical column of
the MXM, as well as some dark blue squares in a vertical
column of the SXM.

. The colors indicate the type of instruction. For this example,
all green squares represent an Install Weight instruction in
the MXM, while the orange squares are matrix multiplication

instructions.

The above example is in Schedule mode, zoomed in!

groq © 2023 Groq, Inc. | Grog Al Workshop

Schedule Mode displays information for each instruction in the
program including when in time the instruction is scheduled, how
long it takes, and where in the chip it occurs.

Navigating GrogView

Schedule Mode: Instruction Connectivity

Instruction Connectivity

When an instruction is selected, the subgraph of connected

[)
- instructions is visible.
groq * N a0) ... ° Mousing over an individual instruction will update the
Setings ? A @ o siioRaed GnEReE Program pane (left) with details about the instruction.
i Collapse Al . Different instruction types have different details to display.
xm P 2 a e oot . The instruction control unit (ICU) that the instruction is

Stats Schedule Continer Stroams
(@ hide container outline
@ hide minimap

Fit Width
Maximize Height

Max Display Height: 3500 cycles
Larger display height = loss responsiveness
[]

Hide Settings A

Program

output_bind

Select device

Instruction

cu: Mem W 30

<Mem|W 30

200

« loc("GrogInputPacking”)
« loc("[fc|MatMul"("fc|MatMul"))

« loc(unknown)

« loc(fused["|fc|Add"("lfc|Add")| "Ini

scheduled to run on (for example, “MXM W" = Matrix
Execution Module, West).

. The type of instruction (Read).

. Where the instruction lies in the hierarchy of instruction
containers (root >> loc(“GrogInputPackaging”)).

. At what cycle the instruction is scheduled (cycle 101).

. Which inputs it has, and for each input:

o The name

o The amount of skew (i.e. how many cycles after the
instruction starts does the data arrive)

o The inbound streams on which it arrives

The above example is in Schedule!

groq" © 2023 Groq, Inc. | Grog Al Workshop

Streams Mode provides a view of the flow of data on streams to
help identify any conflicts.

N a \/l g a t | n g G ro q \/l e\/\/ GroqChip provides 64 streams for data movement: 32 traveling

eastward, and 32 traveling westward.
Streams Mode
Cycle Slider Bar (top)
. Allows for cycle selection and to step forward through the
program, observing the state of each stream at each cycle,
until the last cycle in the program.

ro - P siow med fast . The +1 or -1 buttons will allow for incrementing or

9 q Cycle 204) ol decrementing the cycle count by T when clicked.

e = e —— ° Using the play/pause bqtton at the top will automatically step
Collapse Al through one cycle at a time. The playback speed has three

options: slow, medium, fast and can be selected at any time.

v root
+ loc("GroginputPacking")
+ loc("[fcIMatMul"("fc|MatMul*))
+ loc(unknown)

8 hide container outiine

Where Streams Traverse

Program + DosiisgiiclAdaTO ol Add) . At cycle 0, shows functional units that streams will traverse -
output bind eastward streams on the top, westward streams on bottom.
[l Select device o . . .
&7 . The horizontal zone in the middle of the diagram has labels of

functional units (MXM, SXM, IO, MEM, VXM, and so on). The
bars above the middle zone represent the functional units as
traversed by eastward streams. The ones below are for the
westward streams.

Consumption D

Consumer
type: Mem W 23

cle: 204

Produced by

Instruction(s) Information
. Hovering over a circle shows more information (in the

informational pane on the left) about the instruction or
Light green in VXM indicates a large ALU, purple is a small ALU. instructions it represents.

Stream Information
. Hovering over a circle or an occupied stream register (gray
square) shows index of stream on which activity occurs (and
its direction of flow). For example, O > indicates stream O
L. eastward, and <15 indicates stream 15 westward.
The above example is in Streams mode!
Unit Information
groq" © 2023 Grog, Inc. | Grog Al Workshop . Hovering over any functional unit will show the name at

either the top or bottom of the diagram.

Navigating GrogView

Streams Mode

» slow fast

‘ , Cycle 113

+1

issues: (103 (+0)] (109 (+0)] (113 (+1)] (119 (+0)] (142 (+1)] (145 (+0)] (151 (+0)] (153 (+2)] (161 (+0)] [165 (+0)] (169 (+0)] (185 (+0)]

The above example is in Streams mode!

groq © 2023 Groq, Inc. | Grog Al Workshop

Streams Mode provides a view of the flow of data on
streams to help identify any conflicts.

GroqChip provides 64 streams for data movement: 32
traveling eastward, and 32 traveling westward.

Stream Conflicts are identified in 3 places:

1. Stats Mode: Reported as a Stream Issue.
2. Streams Mode:

a. Atthe top of the window there will be text
indicating where the conflict occurs. For
example, “Issues: 113 (+1)" where 113 is
the first cycle the conflict appearsand 1is
the number of cycles the conflicts last.

b. In the main window, any instruction that
is orange indicates a stream conflict.

IOP File Utility

(grogflow) hozen@apps-srv2:

iop-utils stats output.iop

Program ©: unnamed

Program is 27813 cycles.
Aggregate Utilization

Memory West: 4.10 %
Memory East: 4.28 %
VXM: 13.56 %

SXM: 3.62 %

MXM: ©.85 %

I0: 0.00 %

GrogFlow model IOP files can be
found in /.cache/grogflow/. For
example, BERT-Tiny's IOP file is in
/.cache/groqgflow/bert_tiny/compile.

iop-utils

Command line tool to extract
metadata Input/Output
Program (IOP) file, which
includes information about the
number of cycles the model
takes to execute, the usage of
the various functional blocks
within the LPU, and the inputs
and outputs expected.

Run iop-utils --help on your
command line to view options!

® Tip: Input data for compiled models must be formatted as NumPy arrays and inputs/sizes must match

inputs/sizes expected by your IOP file(s). If unsure of what your model’s IOP file(s) expects, use the IOP File Utility!
groq © 2023 Groq, Inc. | Grog Al Workshop

Grog Public

128

TSP Control Utility

hozen@apps-srv2:~$ tsp-ctl --help
Usage: tsp-ctl [OPTIONS] COMMAND [ARGS]...

tsp-ctl Program

The Grogq Tensor Streaming Processor (TSP) Control Utility (tsp-ctl)
provides commands to enable interactions with Groq hardware in your
system.

hozen@apps-srv2:~$ tsp-ctl -monitor
Checking all cards ... Count: 1 time(s) Delay: @ second(s) Timestamp:
False

Device Order: ['groge']
BoardTemp (C):[39.0] ASICiTemp (C):[45.0] ASIC2Temp (C):[46.75]
Pdd (W):[42.0] Idd (A):[53.5] IddPeak (A):[59.0]

groq © 2023 Groq, Inc. | Grog Al Workshop

tsp-ctl

Command line tool to interact
with Groq hardware, including
options to check the status of
the available cards in your
system, power readings, card
statuses, and more.

Run tsp-ctl --help onyour
command line to the full list of
options and how to use them!

Grog Public

129

Resources

oroq

How-To Videos + Webinars
Groq Support Portal
Groq GitHub
o Code Examples
o Models
Groq Resources Page
o Research Papers

© 2023 Groq, Inc. | Grog Al Workshop

LPU™ INFERENCE ENGINE POWERS

RECORD-BREAKING
LLM PERFORMANCE

Running Llama-2 708

75 videos

simple elegant pro

£\ Subscribed v

Home Videos Live Playlists Community

groqdlay
Introducing

GrogFlow™

Daniel Holanda

groq

0 10:12
Welcome to the Groq Secure Customer Portal ac

Login to Your Account! Intro to GrogFlow (T rogDay

New to us? Sign Up

o The
o Al SUMMIE

Sign in with Google B Sign in with Microsoft

@

PROOUCTS | VEATCALS RESOURCES ABOUT GAREERS COMTACTUS Accelerating Al &
groq i ° Compute with GroqChip™

Tim Sears, PhD
Wead of Software Applications, Groq

23:42
Events Press
Accelerating Neural Networks with
Groq Tensor Streaming Processor ...

Grog Public 130

https://www.youtube.com/@GroqInc
https://support.groq.com/
https://github.com/groq
https://github.com/groq/groqflow/tree/main/examples
https://github.com/groq/groqflow/tree/main/proof_points
https://groq.com/videos/
https://groq.com/docs/

groq

For more
iInformation on
Grog technology
and products,
contact us at

support.grog.com
support@grog.com

© 2023 Groq, Inc. | Grog Al Workshop

Questions?

Follow us
on Twitter

@Groglnc

in

Connect with
us on LinkedIn

https://www.linkedin.com/

company/arog

Groqg Public 131

https://www.linkedin.com/company/groq
https://www.linkedin.com/company/groq
https://twitter.com/GroqInc?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
http://support.groq.com
http://support.groq.com
mailto:support@groq.com

groq

Thank You!
hozen@grog.com

Enabling Research

WiligN@igele SRS EIEI SRS I

Igor Arsovski
Head of Silicon & Fellow

Enabling Research
with Grog

AGENDA

LPU Applications beyond LLMs
Systems Roadmap and Capability
Chip Determinism unlocks LPU
Superpower

More Moore Scaling Benefits of
Determinism

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 134

Attention

v Business

R Engineers

groq © 2023 Groq, Inc. | Grog Al Workshop

Solution Diversity

Customer Problem Statement

Value Delivered by Groq

Drug discovery: Accelerate time to
discovery from days to minutes

Cyber security: Improve accuracy and
reduce false positives

Fusion reactor: Enable fully predictable
real-time controls systems (<1sec)

Capital markets: Enable rapid hypothesis

testing at Scale

General ML: Support a diverse set of popular models

groq" © 2023 Groq, Inc. | Grog Al Workshop

>300 x speed-up when evaluating
candidate COVID drugs

>600x speed up for real-time cyber-threat
anomaly detection; with superior accuracy

>600x speed up to make real-time
plasma stabilization possible

>100x speed-up enabling rapid trading
hypothesis testing

>500 common models natively compilable with performance

ahead of GPUs

Groq Public 136

Accelerating Drug Discovery

Performance enables pharma / bio human innovation

CANDIDATE TESTING THROUGHPUT

400.0
RELATIVE

300.0 PERFORMANCE
Higher
: .
IS Better.
% Baselined to
g Nvidia V100, FP32

100.0

1.0X 1.7X
0.0

Nvidia V100, FP32 Nvidia A100, FP32 GrogCard™ 1, GroqCard™ 1,
FP32 FP16

GroqCard1 delivers >300x better throughput for drug discovery vs existing
GPU-based competitor reducing the time-to-solution from days to minutes!

"~ 'As measured at the host across 31 unique model inferences, at batch size 512, with
groq ©2023 Grog, Inc. | Grog Al Workshop 15 800 batches per run 9

Argonne &

NATIONAL LABORATORY

Groq Advantages

A

(.

Accuracy with
lower precision

T

Large on-chip
memory

Groq Public 137

Cyber security

Publicly disclosed customer & partners

Excerpts
US Army Validation
Report Summary

A rgo n n e é @ With-additional variables or larger datasets, the Entanglement/Groq capability

NATIONAL LABORATORY)
ENTANGLEMENT

OAK RIDGE i
%National Laboratory @ Iq t IN-Q-TELw Optimization (QUBO) problems. Previous AAG efforts showed the ability to detect
120,000 inferences per second. This was the metric used as the benchmark and
= ms
¢P» Bittvvare

OneNano amolex company

Groq is also currently working with

(ﬂOﬂ-pU bl I?ly d ISC|OSGd) customers from Within six months Entanglement was able to achieve an anomaly detection rate of
the f°||°W|ng ma rketS: 72,000,000 inferences per second and demonstrated the potential to achieve

. . . 120,000,000 inferences per second across a wide domain of data processin
Enterprise Web Communications P 3 2

Large-scale Banking Provider
Automotive Manufacturer
Hyperscalers

systems.

groq" © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 138

XTX Acceleration

Build fast applications from tall and skinny matrix operations

Library to build large scale physics and data-science applications:

Express applications as multiplication of tall and skinny matrix
to give large performance boost

Typical matrix sizes (PxN):10k x 1B to 100k x 10B

API to easily compose applications out of modular, high
performance building blocks which run on GrogChip
processors or CPUs

API supports scaling from a single GroqChip to multiple racks

Application areas:

Finance: correlation

Physics: quantum error mitigation

Data science: principal component analysis, multi-linear
regression

groq" © 2023 Groq, Inc. | Grog Al Workshop

P | X7 X

C/C++

XX

[P

// Calculate covairance on two nodes with four tsps per

node

calculate_covariance_tsp(15000, 2, 4, inputs, xtx_results,

F32, xtx_iop_dir, nodes, config);

// Collect covariance result on node @ for eigenvectors

sum_batch(xtx_results, num_nodes, eigenvector_in, config);

// Calculate first 3 largest eigenvectors on node @

eigenvectors_cpu(3, eigenvector_in, eigenvector_re-

sults[@], nodes[@], config);

// Send eigenvectors to node 1

send_batch(eigenvector_results[@], eigenvector_results[1],

config) ;

// Project components onto original data

multiply batched_matrix_fixed_vector_tsp(15000, 3, 4, mat-
mul_iop_dir, inputs, eigenvector_results, matmul_results,

nodes, config);

Grog Public

139

Target Market

Natural Language Anomaly Advancing CYBERSECURITY / INFOSEC
Processing (LLMs) Detection core technologies
related to Al, ML, US GOVERNMENT
O * and HPC
RESEARCH & SCIENCES
e e Optimizing

a broad range of FINANCIAL SERVICES

inference heavy
workloads ENTERPRISE COMMUNICATIONS

Linear Real-time
Algebra Series

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 140

Attention

¥ Business

v Engineers

groq © 2023 Groq, Inc. | Grog Al Workshop

Silicon
Generation

LPU™ Accelerators
Per Chassis

Single
Core Cluster

Same Software

Compiles Across All Platforms

1:]

8 x Vi-LPU™

264 x LPU™
(4 Racks)

groq" © 2023 Grog, In¢ E6onphAISRANdtwofo fit 250+ Llama-2 70B models

1:[]

32 x V1-LPU™

4,128 x LPU
(33 Racks)

336 x V2-LPU™

680,064 X LPU
(675 Racks)

85,008 x LPU w/ five 9’s

(85 Racks)*

Groqg Public 142

GROQ Enables

Software & Hardware Co-optimization

v] [o]
> TGE T HE s]
i = .
E 10 E GROQ™ COMPILER ENABLES
s 4 = o,
e &I Hardware & Software ss| 2 8 2 sl
E = ; ; 5 ° J ® M§\0 (>,<) - §7” aM (>,<’ ‘?M
:E oS A Co-optimization & (B &
§ % b5 s i:'; L
£ o
) 4
v] [o]

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

If you're going to push a piece of
mMachinery to the limit, and expect it to
hold together, you have to have some
sense of where that [imit is.

Look out there.
Out there is the perfect lap. No mistakes.

Every gear change, every corner. Perfect.

You see it?

groq © 2023 Groq, Inc. | Grog Al Workshop IMAGE ¢

https://en.wikipedia.org/wiki/Ford_GT40

GROQ® COMPILER

Enables Performance, Power, Ldi/dt, & Thermal Profiling

GroqChip™ Functional Units Power Over Time
= VXM == MEM == VXM SXM

d 1 ’_‘ i
A *1[;1- —
b b 3

- F i S

=y [} [1T] & > w

Co i HeRge >IRERE 3

s SHIT R ¢)

= RIE 21 B

X = o (o} B X

c B g =

- | £ £ a =

= & = = & =
@ @

TIME(ns)

Groq Compiler can profile 100% deterministic power, temp, di/dt down to a “ns”

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 145

GROQ® COMPILER

Enables Performance, Power, Ldi/dt & Thermal Control

GroqChip™ Total Power Over Time
== original == 75% power cap 50% power cap == 25% power cap

25% peak power reduction

/ ©@0.2% perf loss
Data Flow]

50% peak power reduction
/ @6.9% perf loss

POWER (W)

75% peak pwr reduction
@39% perf loss

Matrix (MXM)
Memory(MEM)
Memory(MEM)
Matrix (MXM)

~-Shift/-Permute(SXM)-

Instruction Dispatch TIME(ns)

Groq Compiler controls LPU power, temp, di/dt down to a “ns” - key for reliability & compute density (2D/3DIC)

groq © 2023 Groq, Inc. | Grog Al Workshop Groqg Public 146

GROQ COMPILER ENABLES

Ldi/dt Control

1.00X | — original <— 100% peak power
—— 50% peak power cap + 50% Ldi/dt cap
0.75X —— 25% peak power cap + 15% Ldi/dt cap 50% peak power
: /
% 0.50X
a
5. | 0.25X
E — —
o 0 > p3 <=
> qEEEET 1T} =
X X b3 b3 X
by | JNERE > b3 0.73
2 N g g o 0.72 1 Reducing wasted power
= a - 0.71 -
O 3 Q () ©
= & = = = 0.70
't E 0.69 -
u;’ a 0.68
1 g 0.67 -
Instruction Dispatch 0.66
8§ P aaa 0.65
0.64
0.63 :

TIME

QroqQ ezomcegmcicgaw Groq Compiler optimizes Ldi/dt in 2D/3D module space/time Groq Public 147

GROQ™ COMPILER ENABLES

Thermal Optimization for 3D Logic-on-Logic Stacking

Deterministic Functional Units Scheduling Allows Complementary -
. . . Op
Power Consumption across two or more dies in a 3DIC Top / -
Ratl Bottom

B Top TSP [Bottom TSP

r Workload scheduled across functional units with
awareness of location and thermal impact

e Multiple 3DIC share the same thermal envelope.

e Each chip can allocate a power budget from the
total budget pool while maintaining thermal
envelope

67%

POWER
e

| Top Die

A

e PVT monitors used for calibration before
33% deployment, and act as guardrails if the compiler
mis-predicts power consumption after deployment

Bottom Die

v

0 10 20 30
TIME

OroqQ oz0scwaincicar Groq Compiler optimizes Thermals in 2D/3D module space/time Grog Public 148

Al Model Growth

is Accelerating Improving Time

to Market (TTM)

Enabling Agility

& Customization , :
Moore's Law Is

Slowing Down
groq" © 2023 Grog, Inc. | Grog Al Workshop

SCAITABLE .
Silicon Tiler For Fast

Time-to-market

Multiple Interconnect Options

C2C for high-radix interconnect
UCle for MCM connected sidecar accelerator
Scalable SXM for BW to/from 10 and Compute

Scalable compute architecture

SRAM scalable capacity
VXM with scalable number of PEs
MXM with scalable matrix sizes

groq © 2023 Groq, Inc. | Grog Al Workshop

10 Options

10=SerDes | - | |02 8erDes |

10 = SerDes . 40O = SerDes

-
Scalable SRAM

A

Scalable Compute

Groq Public

150

Next-gen Silicon Compiler

Enabling Grog Silicon Compiler & Ecosystem

Scalable SRAM

(220-440MiB)
with 3D SRAM
extension
Scalable Compute
16 SL: 256x256
20 SL:, 320x320
24 SL: 384x384

groq © 2023 Groq, Inc. | Grog Al Workshop

LPU Core

Chiplet

Groq Public 151

Design Space Exploration (DSE)

Al Assisted Exploration & Design

Model Design Ideal Performance
Portfolio Constraints -------- . rom-o-- - Candidates & Sl Costs
POWER LIMIT . :
TOTAL COST Groq SI A
Tiler —
PROCESS I
TECHNOLOGY
SUPPORTED B
NUMERICS Groq™
) Compiler -
: c

Enabling highly productive and scalable discovery at The Speed of Software

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

Atlas 3D plot
9roq Atlas Explorer

Welcome to Atlas Explorer 4500

Explore the performance of different variants of the
Groq hardware architecture on a variety of state-of-the-
art ML models. The 3D plot is interactive.

4000
Cost Function
Fully Pipelined IPS -
Plot axes: 3500
X: | VectorLength ~ Y- DRAM(GB/s) ~
Design Space
Models 3000
I x | efficientnet_b1 -
[] HW Config
Vector Size 2500
128 256 320 512
DRAM (GB/s)
a2
128 256 460 819 1075 [JFilter by constraints [View competition performance
MXM Planes
Table of Results (80/80 found in cache)
2
Marnory Time Zonss Status model vector_size mem_num_tzs_per_hem: dram_gigabytes_per_: sram bytes latency
Cached efficientnet bl 128 5 128 41943040 802412
567 89
Cached efficientnet_bl 128 6 128 50331648 681764
Permuters
Cached efficientnet_bl 128 7 128 58720256 649827
2 Cached efficientnet bl 128 8 128 67108864 619676
Shifters
Cached efficientnet_bl 128 5 256 41943040 735194
5 2 6 Cached efficientnet bl 128 6 256 50331648 625305
VXM Ranks =,
Cached efficientnet_bl 128 7 256 58720256 585067
4 Cached efficientnet_bl 128 8 256 67108864 550147
Cached efficientnet bl 128 5 460 41943040 709181
Constraints Cached efficientnet bl 128 6 460 50331648 600544

groq © 2023 Groq, Inc. | Grog Al Workshop

http://127.0.0.1:8050/

Workload to Silicon

Driving Time-to-market Improvement

Silicon Design Cycle Improvement

Design Space

Exploration & (P2 Y g— 18 Months

Silicon Tiler Grog Automated Conventional
TTM Improvements

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public

groq

Al SOFTWARE

Ecosystem \

© 2023 Groq, Inc. | Grog Al Workshop

SOFTWARE

Compilers
SILICON

Al Hardware

/

Core

Ecosystem
[] []
[]
Chip Chiplet P

Groq Public

Data Center
Reliability
Approaching
Automotive

Large Al models
train on >100,000 Al SoCs

Silent Data
Corruption can have
>30% performance impact

Need a high reliability,
testable, predictable, and
reproducible hardware

groq © 2023 Groq, Inc. | Grog Al Workshop

Cores that don’t count

Peter H. Hochschild Rama Govindaraju David E. Culler
Paul Turner Parthasarathy Amin Vahdat
Jeffrey C. Mogul Ranganathan Google
Google Google Sunnyvale, CA, US
Sunnyvale, CA, US Sunnyvale, CA, US
Abstract M, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

We are accustomed to thinking of computers as fail-stop, es-
pecially the cores that exccute instructions, and most system
software implicitly relics on that assumption. During most of
the VLSI era, processors that passed manufacturing tests and
were operated within specifications have insulated us from
this fiction. As fabrication pushes towards smaller feature
sizes and more claborate computational structures, and as
i y ilicon pairings are intro-
duced to improve performance, we have observed cphemeral
computational errors that were not detected during manu-
facturing tests. These defects cannot always be mitigated by
techniques such as microcode updates, and may be correlated
to specific components within the processor, allowing small
code changes to effect large shifts in reliability. Worse, these
failures are often “silent” — the only symptom is an crroncous
computation.

‘We refer to a core that develops such behavior as “mercu-
rial”" Mercurial cores are extremely rare, but in a large fleet
of servers we can observe the disruption they cause, often
enough to see them as a distinct problem — one that will re-
quire collaboration between hardware designers, processor
vendors, and systems software architects.

“This paper is & call-to-action for a new focus in systems re-
search; we speculate about several software-based approaches
to mercurial cores, ranging from better detection and isolat-
ing mechanisms, to methods for tolerating the silent data
corruption they cause.

ACM Reference Format:
Peter H. Hochschild, Paul Tumer, Jeffrey C. Mogul. Rama Govin-
darsju, Parthasarathy Ranganathan, David E. Culler, and Amin Vah-
dat. 2021, Cores that don't count. In Workshap on Hot Topics in
Operating Systems (HotOS "21), May 31-June 2, 2021, Ann Arbor,

Permission to make digital or hard copies of part or all of this work for
persanal or classroom use is granted withos fee provided that copics are not
‘made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
compoacats of this work must be bonored. For all other uses. contact the
awner/asthor(s).

Hot0S 21, May 31-June 2, 2021, Arn Arbor, MI, USA

© 2021 Copyright held by the ownesfasthor(s).

ACM ISBN 978.14503-8438-4/21/05
itpsJidoi.org/10.1145/3456336.3465297

1145/3458336.3465297

1 Introduction

Imagine you are running a massive-scale data-analysis pipeline
in production, and one day it starts to give you wrong answers
— somewhere in the pipeline, a class of computations are yield-
ing cormupt results. Investigation fingers a surprising cause: an
innocuous change to a low-level library. The change itself was
«correct, but it caused servers to make heavier use of otherwise
rarcly-used instructions. Morcover, only a small subset of the
server machines are repeatedly responsible for the errors.

This happened to us at Google. Deeper investigation re-
vealed that these instructions malfunctioned due to manu-
facturing defects, in a way that could only be detected by
checking the results of these instructions against the expected
results; these are “silent” corrupt execution errors, or CEEs.
‘Wider investigation found multiple different kinds of CEEs:
that the detected incidence is much higher than software engi-
neers expect; that they are not just incremental increases in
the background rate of hardware errors; that these can mani-
fest long after initial installation; and that they typically afflict
specific cores on multi-core CPUs, rather than the entire chip.
‘We refer to these cores as “mercunial.”

Because CEEs may be correlated with specific execution
units within a core, they cxpose us to large risks appearing
suddenly and unpredictably for several reasons, including
seemingly-minor software changes. Hyperscalers have a re-
sponsibility to customers to protect them against such risks.
For business reasons, we arc unable to reveal exact CEE rates,
but we observe on the order of a few mercurial cores per
several thousand machines — similar to the rate reported by
Faccbook [8]. The problem is serious cnough for us to have
applied many engincer-decades to it.

While we have long known that storage devices and net-
works can corrupt data at rest or in transit, we are accustomed
to thinking of processors as fail-stop. VLSI has always de-
pended on sophisticated manufacturing testing to detect def
tive chips. When defects escaped, or manifested with aging,
they were assumed to become fail-stop or at least fail-noisy:
triggering machine-checks or giving wrong answers for many
kinds of instructions. When truly silent failures occurred, they

Groq Public

156

Resilient

Language Processing
Unit™ Accelerator

Interconnect resilience
Low-BER FEC enabling 99.999% uptime

Redundant C2Cs wired at the System Level
Bad C2C lanes bypassed in system

Compute and memory resilience

10 Options

MXM checksum for SDC mitigation

Scalable Compute

Detecting in compute errors

SRAM / Interconnect ECC protection

Repairable for yield and quality improvements

Redundant SLs for improved yield/reliability 10 = SerDes - 40 = SerDes -

-
Scalable SRAM

groq © 2023 Groq, Inc. | Grog Al Workshop Groq Public 157

groq

Thank You!
iarsovski@groqg.com

