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Autonomous robotic platform for designing 
“cellular parts”

membrane-less cellular 
compartments

scaffolding proteins

molecular motors

enzymes

transcription factors 

neutralizing antibodies• Engineering cellular parts à building reusable ‘car parts’:
• Bio-medicine:
• antibodies, 
• vaccine design, 
• small molecule inhibitors, 
• peptides

• Bio-tech: 
• Industrial production of metabolites, products, etc. 

• Bio-materials:
• drug and vaccine delivery with membrane-less compartments, 
• new tensile materials adapting to various conditions

• Bio-security:
• genome-scale engineering



Aim 1

Aim 2
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An integrative platform for engineering biological 
“parts”



Current paradigm of designing cellular parts is not 
scalable (and not sustainable)

Parent 
sequences

Scaffold / active 
site identification

Combinatorial 
libraries 

Score 
substitutions

Ensemble of 
ranked variants

High-throughput 
protein screens/ assays

Selected 
sequences

• Only a negligible 
fraction 
(1/10117 maximum) of 
the available sequence 
space can be searched

• Complicated further by 
combinatorial 
optimization involved 
in pathway designs



Outline (What this talk is about?) 

§ Learning representations for complex biological datasets 
– foundation models for genomes 
– genome-scale language models 

§ Scaling foundation models for genomic-scale data + generative models: 
– individual gene / protein level (malate dehydrogenase/ MDH as an example) 
– whole genome level (SARS-CoV-2 as an example)

§ Embodied agents as scientific assistants for biological discovery: 
– autonomous laboratories / self-driving laboratories 
– teaching robots to write biological protocols 
– applications to antimicrobial discovery

§ Future work/ perspectives 



Biological information and hierarchy



5’ UTR

promoter start 
codon

stop 
codon

open reading frame 3’ UTR

gene/ gene product (aka protein)

collection of genes (either as 
”contigs” or ORFs)

entire genomes

Full genome sequences - BPE Encoding, cannot 
currently generate full genomes

Enzyme/transcription factor sequences  - 
codon level tokenization, GPT models

Open reading frames – codon level tokenization, 
Reformer model

Hierarchical information representation for ‘-omics’ data 

single gene

viral genomes

plasmid/pathway

bacteria

eukaryotes

human!

O(1000) bp

O(10-100) Kbp

O(10-100) Kbp

O(1-100) Mbp

O(>100) Mbp

O(3) Gbp



Genome-scale language models (GenSLM)

5’ UTR

promoter start 
codon

stop 
codon

open reading frame 3’ UTR

gene/ gene product (aka protein)

collection of genes (either as 
”contigs” or ORFs)

entire genomes

Full genome sequences - BPE Encoding, cannot 
currently generate full genomes

Enzyme/transcription factor sequences  - 
codon level tokenization, GPT models

Open reading frames – codon level tokenization, 
Reformer model

• Go beyond traditional k-mer 
models: 
• variable length issues 

• At each level of hierarchy maintain 
information learned at the lower 
levels (gene à collection/cluster 
à full genomes)

• Scale at each level but “tie” it 
together with stable diffusion 
models 



Genome-scale Language Models (GenSLMs)
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Model Seq. length #Parameters Dataset

GenSLM-
Foundation

2048 25M, 250M, 2.5B, 
25B

110M

GenSLM 10240 25M, 250M, 2.5B, 
25B

1.5M

GenSLM-
Diffusion

10240 2.5B 1.5M

• Scaling LLMs with 25B parameters:
• O (L2) complexity in the attention 

computation
• overcome communication overheads, 

parameters, checkpointing
• Variation within SARS-CoV-2 sequences can be 

small (< 1% overall variation)
• Need foundation model to accommodate 

diversity
• One of the largest foundation model 

trained on raw nucleotide sequences

9



GenSLMs achieve state-of-the-art perplexity even with 
shorter training cycles 

Need more time to train?

• Perplexity measures the number of guesses required 
by the LLM to predict the token of interest
• Perplexity of 1 implies perfect model1 

• As trainable parameters increase, model perplexity 
reduces 
• Challenge: 25B model includes model 

sharding and the training time available on 
GPUs imposing limitations

• Solution: Cerebras CS-2 wafer-scale cluster 
enables training 

Most results based 
on 2.5B model

1. Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon 
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. “Scaling laws for neural 
language models.” arXiv preprint arXiv:2001.08361(2020).



GenSLM Foundation models reveal new 
biological insights on gene-level organization



GenSLMs also reveal function level organization of 
bacterial genes



GenSLMs can also distinguish coding and non-
coding sequences …  

HyenaDNA (small-large models)



Infrastructure of GenSLM Foundation Models



Generative modeling with GenSLMs



GenSLMs are accurate enough to 
generate gene sequences…

UMAP embeddings of generated sequences agree with learned 
embeddings using GPT-2

generated sequences ‘fill’ 
evolutionary gaps



Proteins share MDH similarity at key sites as predicted 
with OpenFold

GenSLMs learn the two distinct isoforms for MDH and within each isoform we find 
conservation of key residues and placement of binding sites



Designing enzymes by incorporating experimental 
feedback (aka ChatGPT for protein design)
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• Need general framework that enables 
generative design of proteins by 
incorporating experimental feedback 

• Genome-scale language models (GenSLMs)1 
provide a means to incorporate generative 
modeling for gene sequences:
• complementary to protein language 

models 
• Rewards for the model:
• intrinsic – sequence specific (e.g., GC 

content for environmental adaptation)
• extrinsic – functional annotation/ enzyme 

activity measured via experimentation
M. Zvyagin, et al, Genome-scale language models map the evolutionary 
trajectories of SARS-CoV-2 (SC’22 Gordon Bell Prize) 18



Multi-objective RL for generative design allows greater 
sequence diversity across MDH sequences

• We can generate new sequences with varying degrees of sequence 
identity + positive matches

• We can also generate minimal sequences that have functional 
domains and can function as a productive enzyme

19



Generative models can sample novel sequences 
with better activation energy for MDH 

• Exploring even top 1% (1,000 variants x 20 simulation windows = 2,000 simulations) from the embedding space 
using simulations can overcome the limits on nodes (for a single iteration of RL-based finetuning) 

• Labeling productive designs and ranking à large compute requirements across multiple computing sites/ facilities 



Using foundation models to predict SARS-CoV-2 evolution

Foundation model(s) 
trained on 110 million 

PATRIC sequences

Finetune model on 
SARS-CoV-2 ORFs

PRE-TRAINING
• Periodically retrain 

on new variants sequenced across 
specific time window 

• Performance: 
CS-2, Selene Polaris
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FM(s)
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GenSLMs finetuned on SARS-CoV-2 genomes can 
distinguish variants

22

models have seen only this 
data!
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GenSLMs finetuned on SARS-CoV-2 genomes can 
distinguish variants



We can generate synthetic sequences that look like 
SARS-CoV-2



A generated variant is evolutionarily close to BQ.1!

25

B
et

te
r 

b
in

d
in

g
 

(t
ha

n 
w

ild
ty

p
e 

st
ra

in
s)

123-ACE2

123-RBD

point mutations

BA.2.75.2

Gamma

BQ.1

Omicron

XBB

Alpha



Our models also present characteristics of EG.5 …



Building embodied agents as scientific 
assistants…



ARTIFICIAL INTELLIGENCE 
GUIDED, ROBOTICALLY EXECUTED EXPERIMENTS

Autonomous Discovery @Argonne
§ The vision

– A system that starts with a high-level 
description of a hypothesis and autonomously 
carries out computational and experimental 
workflows to confirm or reject that hypothesis

– Use of AI in robotics and simulations to 
close the loop on planning, execution, and 
analysis of experiments

§ Builds on 
– AI approaches to planning (multiple steps), 

and integration of results, causality, etc.
– Machine learning/simulation to design and 

predict exp properties and outcomes
– Automation of experimental protocols 

(robotic steps and workflows)
– Active Learning or RL for selection of next 

experimental targets, etc.

https://github.com/anl-sdl/
https://www.cs.uchicago.edu/~rorymb/  

https://github.com/anl-sdl/
https://www.cs.uchicago.edu/~rorymb/


Embodied agent

A computational system that can interact with its 
environment and learn from those interactions

Sense,
act

Physical 
or virtual

Adapt
responses

Persistent, 
stateful

Courtesy: Ian Foster, ANL/ UChicago



https://voyager.minedojo.org 

https://voyager.minedojo.org/


VOYAGER discovers new Minecraft items and skills continually by self-driven exploration, 
significantly outperforming SOTA. X-axis denotes the number of prompting iterations. 

https://voyager.minedojo.org 

https://voyager.minedojo.org/


Generated by GPT-4, based 
on goal “discover as many 
diverse things as possible”

Store and retrieve 
complex behaviors 

Generate executable code 
for embodied control 

https://voyager.minedojo.or
g 

https://voyager.minedojo.org/


Embodied agent:  Voyager – that generates new 
Minecraft games/ programs

A computational system that can interact with its 
environment and learn from those interactions

Run Minecraft programs, 
retrieve results

Minecraft, 
ChatGPT

Adapt
responses

Persistent, 
stateful

Courtesy: Ian Foster, ANL/ UChicago



A scientific assistant
• Configure and run computational simulations

• Configure and run physical experiments

• Collect, organize, curate data

• Search the literature for data, protocols, etc.

• Formulate hypotheses

• Define protocols to test hypotheses

• Diagnose problems with experiments and simulations

• …

•  Many skills, often requiring specialized knowledge

•  Ability to interact with many resources in many places

Courtesy: Ian Foster, ANL/ UChicago



1) Act on resources regardless of location and interface

 à Widely deployed local agents 
                 provide a global footprint for actions 

2) Execute remote actions reliably 

 à Cloud-hosted managed research acceleration
                 services buffer against inevitable failures

3)  Manage who is trusted to perform what actions, where and when

 à Distributed authentication with delegation
                 enables secure management of privileges

Building embodied scientific agents is fraught with 
challenges

Friction: Varying credentials, authentication protocols, authorization policies;
                need to act on behalf of others

Friction: Varying interfaces, behaviors; reliability; security 

Friction: Failures, scalability, usability

Courtesy: Ian Foster, ANL/ UChicago



Design of antimicrobial peptides
An antimicrobial peptide (AMP) is a short 
(typically 12 to 50 amino acid) molecule that 
can target and kill  viruses,  bacteria, fungi, 
and other pathogens

Challenge: Design an AMP that can kill specified 
bacterial strains without harming host cells

With 20 possible amino acids, there are 2020 = 1026 AMPs 
of length 20

A rational design approach might combine knowledge of bacterial cell 
membrane composition and structure, AMP molecular and structural 
properties, host cell membrane characteristics and intracellular 
pathways—knowledge that may be gained by database/literature search, 
simulation, experiment

L. T. Nguyen, E.F. Haney, H.J Vogel, The expanding scope of antimicrobial 
structures and their modes of action, Trends in Biotechnology, 20 (9): 464-472



Automated synthesis and screening platform for 
antimicrobial peptides design

Peptide synthesis (PSE)

Large-language models for 
AMP generation (ALCF) Simulations + simulation 

surrogates (ALCF)

Peptide screening across ~30 
Hope College E. coli strains + 
NIH/CDC ESKAPE collection 
(BIO)

Plate 
incubator

Hudson robotic arm set 
up for liquid handling

Plate 
reader

Simulations capture behaviors of successful 
(and unsuccessful) experiments and derive 
features for constraining AI models

AI models learn successful features from current experiments 
and constrain generation of AMPs every cycle 

1

2

1A

3Throughput: ~96 
peptides/day

Throughput: 7 strains x 96 peptides/ day + (16-24 hours)

Throughput: O(1000s) per hour Throughput: O(10s) per day



Q1:  Peptide XXX is a known antimicrobial. What is its most likely mechanism of action?” 

Q2:  Peptide YYY..UUU shows activity against strain G of E. coli. What is the main 
         mechanism of action?

Q3:  Can mutation H to YYH…UUUU still act as an effective antimicrobial?

Q4:  Pathway P is implicated in action of peptide YYY…UUU as a modulator in strain G of 
         E. coli. What is the likely mode of action that enables this peptide on Pathway P?

Q5:  How similar is P to other sub-systems in other organisms?

Task: Define protocols to validate proposed answers to Q1, Q2, Q3, Q4, Q5

Task: Run these experimental protocols in a self-driving laboratory

Some AMP questions and tasks 1

Courtesy: Ian Foster, ANL/ UChicago



Query PubMed for 
ChatGPT feedstock

Align proteins, predict 
structure, rank results

Evaluate structures and 
filter results

A look at what our scientific assistant has to ”skill” with

Invoke individual agents, which query databases, retrieve data, run simulations, 
run experiments, etc.

• Retrieve abstracts A from PubMed that 
reference specified peptide 

• Use ChatGPT to build hypotheses by using 
retrieval-augmented generation: e.g.: 
“Given A, which organism is {peptide} 
acting on?”

• Protein BLAST 
• Set up simulations for integrative 

runs 
• Query datasets + assimilate similarity, 

etc. 
• Run AlphaFold + other actions: 

BV-BRC = Bacterial and Viral Bioinformatics Resource Center

• Query BV-BRC datasets
• Assimilate similarity scores, etc. 
• Enable set up of interactions (e.g., 

AlphaFold) 

Courtesy: Ian Foster, ANL/ UChicago



PMC 
Agent

BC-BRC 
Agent

Set of 
peptides as 

input

Query PubMed for 
ChatGPT feedstock

Align proteins, predict 
structure, rank results

Evaluate structures 
and filter results

Candidates for 
experimental 

evaluation
UniProt 
Agent

Link with self-driving laboratory

Agents run on 
HPC/AI 
resources

Self-driving lab performs 
experimentsCourtesy: Ian Foster, ANL/ UChicago

2

3



Growth assay application

List of datasets, one per 
experiment, on data portal. 

Application, without data 
analysis and publication steps. 

Results from experiment in which 
tetracycline solution at varying 
concentrations was added to E. 
coli. Y-axis = blank-adjusted 
optical density at 590nm at start 
of experiment (T0) and 12 hours 
after start (T12). Results show 
mean plus error bars from four 
identical runs. 

1. Can we translate lab protocols into a list of lab sub-tasks?
2. Given list of sub-tasks, can we solve each task and recall them as 

skills?



Embodied Agent for Automated Lab Code Generation

Code 
Action

Execution 
Error Refine Code

Add Code 
Skill

Verify Code

Candidate Code
Memory of Tasks

Task Decomp.

Task Prompt Retrieve

Goal 
Tracking

Skills

Memory

Agent



Planning Demo



Code Generation



PMC 
Agent

BC-BRC 
Agent

Generate additional 
experiments?

?

Set of 
peptides as 

input

Query PubMed for 
ChatGPT feedstock

Align proteins, predict 
structure, rank results

Evaluate structures 
and filter results

UniProt 
Agent

Feedback to define additional experiments

Agents run on 
HPC/AI resources

Self-driving lab performs 
experiments

Candidates for 
experimental 

evaluation
2

3



Embodied Agent: AMP Designer… 

A computational system that can interact with its 
environment and learn from those interactions

Run BLAST, AlphaFold; query 
PubMed, etc.; call ChatGPT; 

control robots

HPC, data 
repositories,  

robots, 
instruments 

New Skills & 
Knowledge

Persistent, 
stateful

Courtesy: Ian Foster, ANL/ UChicago



Scaling out the simulation for “smart science factory”

47



Training the next gen workforce with autonomous 
laboratories … 
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