Argonne &

NATIONAL LABORATORY

Integrating generative Al
with automation and

simulations for biological
systems design

Arvind Ramanathan/ ramanathana@anl.gov

Argonne National Laboratory/ University of Chicago Consortium for Advanced Science and Engineering (CASE)

Northwestern-Argonne Institute for Science and Engineering (NAISE)


mailto:ramanathana@anl.gov

Autonomous robotic platform for designing
“cellular parts”

* Engineering cellular parts = building reusable ‘car parts’:
* Bio-medicine:
antibodies,
vaccine design,
small molecule inhibitors,
peptides
* Bio-tech:
* Industrial production of metabolites, products, etc.
* Bio-materials:
* drug and vaccine delivery with membrane-less compartments,
* new tensile materials adapting to various conditions
* Bio-security:
* genome-scale engineering




An integrative platform for engineering biological
“parts”
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Current paradigm of designing cellular parts is not
scalable (and not sustainable)
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Outline (What this talk is about?)

Learning representations for complex biological datasets
— foundation models for genomes

— genome-scale language models

Scaling foundation models for genomic-scale data + generative models:
— individual gene / protein level (malate dehydrogenase/ MDH as an example)

— whole genome level (SARS-CoV-2 as an example)

Embodied agents as scientific assistants for biological discovery:
— autonomous laboratories / self-driving laboratories
— teaching robots to write biological protocols

— applications to antimicrobial discovery

Future work/ perspectives



Biological information and hierarchy



Hierarchical information representation for ‘-omics’ data
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Genome-scale language models (GenSLM)
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Genome-scale Language Models (GenSLMs)
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I I Model Seq. length #Parameters Dataset

TCG CGACGT ... ... ACG ... CTT GenSLM- 2048 25M, 250M, 2.5B, [10M

Foundation 25B

POX; | Xpnpy) 0.4 0.1 0.003 ... ... 0.8 ... 0.l

GenSLM 10240 25M, 250M, 2.5B, .5M

T 25B
GenSLM- 10240 2.5B .5M

z . . Diffusion
Semantic embedding

e Scaling LLMs with 25B parameters:
Transformer layers Ly * O (L?) complexity in the attention
+ attention computation

* overcome communication overheads,

parameters, checkpointing

*  Variation within SARS-CoV-2 sequences can be
i 1 1 i I I i T small (< 1% overall variation)
| l l l l | | | * Need foundation model to accommodate

input sequence [ J[ ) WO @I dversiy :

X[N] \{i} ACC AAC CAA CTT TCG ATC TCT TGT AGA * One of the largest foundation model

trained on raw nucleotide sequences




GenSLMs achieve state-of-the-art perplexity even with
shorter training cycles

3.00

2 1

2.50 -

N
N
w

Training Perplexity
— N
~ o
i o

1.50 1

125 7

1.00

— 25B

Need more time to train? —— 2.5B
- 250M

25M

S

\ Most results based

on 2.5B model

Perplexity measures the number of guesses required
by the LLM to predict the token of interest
* Perplexity of | implies perfect model'

As trainable parameters increase, model perplexity
reduces
* Challenge: 25B model includes model
sharding and the training time available on
GPUs imposing limitations
* Solution: Cerebras CS-2 wafer-scale cluster
enables training

500 1000 1500 2000 2500 3000 3500
Training Step

. Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon

Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. “Scaling laws for neural
language models.” arXiv preprint arXiv:2001.08361(2020).



GenSLM Foundatlon models reveal new
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GenSLMs also reveal function level organization of
bacterial genes
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GenSLMs can also distinguish coding and non-
coding sequences ...

Test Accuracy of Different Models
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Infrastructure of GenSLM Foundation Models

import torch

import numpy as np

from torch.utils.data import DatalLoader
from genslm import GenSLM, SequenceDataset

model = GenSLM("genslm_25M_patric", model_cache_dir="/content/gdrive/MyDrive")
model.eval()

# Input data is a list of gene sequences

sequences = [
"ATGAAAGTAACCGTTGTTGGAGCAGGTGCAGTTGGTGCAAGTTGCGCAGAATATATTGCA",
"ATTAAAGATTTCGCATCTGAAGTTGTTTTGTTAGACATTAAAGAAGGTTATGCCGAAGGT",

| dataset = SequenceDataset(sequences, model.seq_length, model.tokenizer)
dataloader = DatalLoader(dataset)

# Compute averaged—-embeddings for each input sequence
| embeddings = []

/== with torch.no_grad():

4 for batch in dataloader:

# outputs.hidden_states shape: (layers, batch_size, sequence_length, hidden_size)
emb = outputs.hidden_states[@].detach().cpu().numpy()

# Compute average over sequence length

emb = np.mean(emb, axis=1)

embeddings.append(emb)

# Concatenate embeddings into an array of shape (num_sequences, hidden_size)
embeddings = np.concatenate(embeddings)

embeddings.shape

>>> (2, 512)

outputs = model(batch["input_ids"], batch["attention_mask"], output_hidden_states=True)




Generative modeling with GenSLMs



GenSLMs are accurate enough to
generate gene sequences...
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Proteins share MDH similarity at key sites as predicted
with OpenFold

GenSLMs learn the two distinct isoforms for MDH and within each isoform we find
conservation of key residues and placement of binding sites



Desighing enzymes by incorporating experimental
a ChatGPT for protein design)

feedback (ak
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Need general framework that enables
generative design of proteins by
incorporating experimental feedback
Genome-scale language models (GenSLMs)!
provide a means to incorporate generative
modeling for gene sequences:
* complementary to protein language
models
Rewards for the model:
* intrinsic — sequence specific (e.g., GC
content for environmental adaptation)
* extrinsic — functional annotation/ enzyme
activity measured via experimentation

M. Zvyagin, et al, Genome-scale language models map the evolutionary
18tr‘ajectories of SARS-CoV-2 (SC’22 Gordon Bell Prize)



Multi-objective RL for generative design allows greater
sequence diversity across MDH seauences
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Generative models can sample novel sequences
with better activation energy for MDH
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Using foundation models to predict SARS-CoV-2 evolution

Foundation model(s)
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GenSLMs finetuned on SARS-CoV-2 genomes can
distinguish variants
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GenSLMs finetuned on S‘z:A.R-S:éoV-Z genomes can
distinguish variants ,;.‘
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We can generate synthetic sequences that look like
SARS-CoV-2

Genome ID Of Interest Predicted Variant Distance to Reference Neighbors win X K _Neighbors Variant Dictionary

212 top-p0-9-0212 True B.1 19.0 538 {'B.1": 16, 'B.1.206": 3, 'B.1.596": 1}
295 top-p0-9-0295 True B.1 28.0 274 {'B.1":16,'B.1.206": 3, 'B.1.596": 1}
313 top-p0-9-0313 True B.1 19.0 538 {'B.1": 16, 'B.1.206": 3, 'B.1.596": 1}
349 top-p0-9-0349 True omicron 76.0 298 {'omicron': 20}
398 top-p0-9-0398 True B.1 28.0 274 {'B.1': 16, 'B.1.206": 3, 'B.1.596": 1}
416 top-p0-9-0416 True B.1.1.7 56.0 67 {'B.1.1.7:17,'B.1.1": 2, 'None": 1}
438 top-p0-9-0438 True B.1.1.7 49.0 71 {'B.1.1.7": 13, 'B.1.1": 5, 'None": 2}
540 top-p0-9-0540 True omicron 76.0 298 {'omicron': 20}
544 top-p0-9-0544 True B.1.1.7 56.0 67 {'B.1.1.7:17,'B.1.1": 2, 'None": 1}
715 top-p0-8-0715 True B.1.1.7 49.0 71 {'B.1.1.7:13,'B.1.1": 5, 'None": 2}

807 top-p0-9-0807 True B.1 10.0 650 {'B.1':16, 'B.1.206": 3, 'B.1.596": 1}

0 20 40 60 ' 80 100
Mutations



A generated variant is evolutionarily close to BQ. 1!
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Our models also present characteristics of EG.5 ...

p0.9 =

pl —
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0.000 -
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Building embodied agents as scientific
assistants...



Autonomous Discovery @Argonne

* The vision
— A system that starts with a high-level

description of a hypothesis and autonomously
carries out computational and experimental
workflows to confirm or reject that hypothesis
Use of Al in robotics and simulations to
close the loop on planning, execution, and
analysis of experiments

= Builds on

Al approaches to planning (multiple steps),
and integration of results, causality, etc.
Machine learning/simulation to design and
predict exp properties and outcomes
Automation of experimental protocols
(robotic steps and workflows)

Active Learning or RL for selection of next
experimental targets, etc.

https://github.com/anl-sdl/

https://www.cs.uchicago.edu/~rorymb/



https://github.com/anl-sdl/
https://www.cs.uchicago.edu/~rorymb/

Embodied agent
Persistent, Sense,
stateful act

A computational system that can interact with its

environment and learn from those interactions

Physical Adapt
or virtual responses

Courtesy: lan Foster, ANL/ UChicago





https://voyager.minedojo.org/

VOYAGER discovers new Minecraft items and skills continually by self-driven exploration,
significantly outperforming SOTA. X-axis denotes the number of prompting iterations.
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https://voyager.minedojo.org/

Generated by GPT-4, based

on goal “discover as many Generate executable code Store and retrieve
diverse things as possible” for embodied control complex behaviors
Automatic Curriculum Iterative Prompting Mechanism Skill Library

async function combatZombie(bot) {

// Equip a weapon \‘{_’ Mine Wood Log
const sword = bot.inventory.findInventoryItem(
mcData.itemsByName["stone_sword"].id); ‘ Make Crafting Table
if (sword) {
Make Crafting Table \ await bot.equip(sword, "hand");} f Craft Stone Sword
else { .
New await craftStoneSword(bot);} ---=-----. f Skill ‘ Make Furnace
Combat Task // Craft and equip a shield Retrieval
Zombie await craftSheild(bot);  +---=-ceceemnn--. . — . Craft Shield
} &9 Cook Steak
A
A 1 Combat Zombie
Env Feedback Code as Refine Program
Execution Errors Actions Q

MINECRREY

Mine Diamond Update
Exploration

0 & Add New skill
Progress

https://vovager.minedojo.or Environment Self-Verification



https://voyager.minedojo.org/

Embodied agent: Voyager - that generates new
Minecraft games/ programs

{ Persistent, } [ Run Minecraft programs, }

stateful retrieve results

A ([computational system|that can(interact|with its

‘environment and learn from those interactions

[ Minecraft, ] Adapt
ChatGPT responses

Courtesy: lan Foster, ANL/ UChicago




A scientific assistant

*  Configure and run computational simulations
*  Configure and run physical experiments

*  Collect, organize, curate data

*  Search the literature for data, protocols, etc.
*  Formulate hypotheses

* Define protocols to test hypotheses

* Diagnose problems with experiments and simulations

Many skills, often requiring specialized knowledge

Ability to interact with many resources in many places

Courtesy: lan Foster, ANL/ UChicago



Building embodied scientific agents is fraught with
challenges

|) Act on resources regardless of location and interface

—> Widely deployed local agents

provide a global footprint for actions

Friction:Varying interfaces, behaviors; reliability; security

2) Execute remote actions reliably

—> Cloud-hosted managed research acceleration
services buffer against inevitable failures

Friction: Failures, scalability, usability

3) Manage who is trusted to perform what actions, where and when

-> Distributed authentication with delegation

enables secure management of privileges

Friction:Varying credentials, authentication protocols, authorization policies;
need to act on behalf of others

Courtesy: lan Foster, ANL/ UChicago



Design of antimicrobial peptides

An antimicrobial peptide (AMP) is a short
(typically 12 to 50 amino acid) molecule that
can target and kill viruses, bacteria, fungi,
and other pathogens

Challenge: Design an AMP that can kill specified
bacterial strains without harming host cells

With 20 possible amino acids, there are 202 = | 02¢ AMPs
of length 20

A rational design approach might combine knowledge of bacterial cell
membrane composition and structure, AMP molecular and structural
properties, host cell membrane characteristics and intracellular
pathways—knowledge that may be gained by database/literature search,
simulation, experiment
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TRENDS in Biotechnology

L. T. Nguyen, E.F. Haney, H.J Vogel, The expanding scope of antimicrobial
structures and their modes of action, Trends in Biotechnology, 20 (9): 464-472




Automated synthesis and screening platform for

antl m ICI‘ObIal peptldes deSIgn Throughput: 7 strains x 96 peptides/ day + (16-24 hours)
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Some AMP questions and tasks @

QI: Peptide XXX is a known antimicrobial. What is its most likely mechanism of action?”

Q2: Peptide YYY..UUU shows activity against strain G of E. coli.What is the main

mechanism of action?
Q3: Can mutation H to YYH...UUUU still act as an effective antimicrobial?

Q4: Pathway P is implicated in action of peptide YYY...UUU as a modulator in strain G of
E. coli.What is the likely mode of action that enables this peptide on Pathway P?

Q5: How similar is P to other sub-systems in other organisms!?
Task: Define protocols to validate proposed answers to QI, Q2, Q3, Q4, Q5

Task: Run these experimental protocols in a self-driving laboratory

Courtesy: lan Foster, ANL/ UChicago



A look at what our scientific assistant has to ’skill’’ with

Publffed (&) chatcpT

V

%lphaFold

NCBI

Invoke individual agents, which query databases, retrieve data, run simulations,

run experiments, etc.

BV-BRC = Bacterial and Viral Bioinformatics Resource Center

Courtesy: lan Foster, ANL/ UChicago



Link with self-driving laboratory

publed (5] cnrce |EEEERES MY - B\:ERC NCB

Set of ' Query PubMed for | A

peptides as ChatGPT feedstock
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Courtesy: lan Foster, ANL/ UChicago
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Blank-adjusted OD(590)

Python Workflow Action Module [: Transfer]
Creator growth_curve_app
TO_Reading_1_16_49_31 ° °
’ Growth assay application
Apr 05 2023 0 transfer  platecrane: stack5—solo<4>
Apr 06 2023 1] e . remove_lid platecrane: solo<4>—stack2
ki = TO_Reading_2_15_11_52 « L| st Of datasetS, one pel‘ refil_tips  solo
May 15 2023 a . run_protocol solo
a experiment, on data portal. .
May 312023 o TO Reading_1_14_33_37 run_protocol ~ solo
Jun 012023 (1] hso_2
Jun 022023 : run_protocol solo
' |. Can we translate lab protocols into a list of lab sub-tasks?
1 2. Given list of sub-tasks, can we solve each task and recall them as
j S I(I I I S ? ane: hidex—sealer
@ TO.Reading_2_18 0128 Results from experiment in which seal sealr
1.50 . . . transfer  platecrane: sealer—liconic
tetracycline solution at varying S ——
1257 concentrations was added to E. — mansusn A
1.00 - coli.Y-axis = blank-adjusted wopaeriz
0.75 1 optical denSity at 590nm at Star’t transfer  platecrane: liconic—peeler
—4— T12 . peel peeler
o — 1 | of experiment (TO) and 12 hours ———
after start (T12). Results show ——— i
0.25 A " -
mean plus error bars from four S —
open idex
0.00 3'0 1'5 7j5 3.'75 1.575 (') identical runs. transfer  platecrane: hidex—<trash>
close hidex

Tetracycline Concentration (ug/mL)




Embodied Agent for Automated Lab Code Generation

Performing Task 1...
Reasoning: Based on the information provided, it seems like the next logical step
would be to prepare the master mix for the PCR reaction. This involves combining
various reagents in specific volumes to create the master mix solution.

Task: Prepare the master mix for the PCR reaction. Candidate COde
Agent

Memory of Tasks

Useful Programs:

def PCR_Master_Mix(labware_info, protocolContext):

2. Query Vector Store

*/
Input: labware_info -—> json-str Vector
TaSk Prompt Pass in a variable labware_info that contains labware information and . Store Embed
. quantities used Retrleve 55,-03.. XXXXXXXXXXXXX
= 21,01 XXXXXXXXXXXXX
Output: function call that creates master mix DNA and assigns to appropriate locations < .
21,01...-17,09
Human:
labware_info = {"number_of_samples":96, Sk'll PRI R
"right_pipette":"flex_8channel_1000", I S LEELROLITOOITL
"left_pipette":"flex_8channel_1000","mastermix_volume":18,"DNA_volume":2}
A A

A
Goal

Task Decomp. Tracking Code Execution Add Code

Action Error Refine Code Skill

Main Task

PN

Task 1 Task 2

VRN /N

Task 3 Task 4 Task 5 Task 6

Verify Code

»
»




Planning Demo

(finalvenv) (base) dhcp-10-105-24-11:curr_demo BrianHsu$



Code Generation

(finalvenv) (base) dhcp-10-105-24-11:0pentrons_Code_Generator BrianHsu$ p



Feedback to define additional experiments

publed (5] cnrce |EEEERE MY - B\:ERC NCB

Set of . Query PubMed for Evaluate structures
peptides as ' ChatGPT feedstock and filter results

input — o o = <
B =

Agents run on
HPC/AIl resources

Candidates for
experimental
evaluation

PMC UniProt
Agent Agent

i

Generate additional

experiments? Self-driving lab performs
experiments




Embodied Agent: AMP Designer...

} { Run BLAST, AlphaFold; query }

PubMed, etc.; call ChatGPT;
control robots

Persistent,
stateful

A domputational system|that can interact with its
environment |and learn|from those interactions

HPC, data .
repositories, New Skills &
robots, Knowledge

instruments

Courtesy: lan Foster, ANL/ UChicago



Scaling out the simulation for ‘““smart science factory”
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Argonne National Lab (ANL) Autonomous Scientific Laboratory

Large Language Scientific Pre-

Model for trained Models
Protocols to (GenSLM)
Python Code

A4 g

Large Language
Models, Visual
and Scientific
Language Models

A v

Video Lectures with Automated Quizzes

Transformers,
Perceivers

Jupyter Notebooks & Interactive Assignments

Automated Evaluation Assignments using LLMs

¥

Open-source

software stack for Virtual Reality
vision and robotic Laboratory
control
Educational .
Educational
Autonomous . .
. e Virtual Reality Lab
Scientific Lab B
Prototypes P

A4 A

Robotics Hardware and Associated Software
Virtual Reality Host Servers and Software

Video and Exercises for Autonomous Lab & VR

¥

* University of Texas at San Antonio (HSI, MI, >50% Hispanic): MS in Al, MS in CS and PhD in CS

* Bowie State University (HBCU): MS and PhD in Computer Science

* Oakland University (R2, 9% African-American/Black students): MS and PhD in Computer Science
* Cleveland State University, Ohio (R2): MS and PhD in Electrical Engineering

* University of Central Florida (HSI, 49% minority students ): MS and PhD in Computer Engineering
* Florida International University (HSI, 64% Hispanic, 12% Black): MS and PhD in Computer Science

Training the next gen workforce with autonomous
laboratories ...

Existing Capabilities
at ANL

Training of faculty by
ANL researchers

Al Software and
Hardware at R2/HSI
Universities

Outcomes of the
MEDAL project

Target Population of
Students
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Funding N Computing Time Colleagues
© DOE- National Virtual Biotechnology o Argonne Leadership Computing (Theta/ O\ Richard Scheuermann %
Laboratory (NVBL) Theta-GPU/ Al-testbed) o James Olds e
o Exascale Computing Project Cancer Deep o Cerebras/Nvidia Z X\:lzsalez risf::tt ié
Learning Environment (CANDLE) o NERSC . Ashka Shah =
o Exascale Workflows Project (ExaWorks) \ o Ozan Gokdemir é
o DOE Codesign for multimodal Al o Mike Tynes =
- NSF MRI: Multi-modal imaging Datal Code/ Models =
- DOE-MEDAL (RENEW) project for O https://glthub.com/ra.manathanIab/genslm §
sorkforee training o Access to model weights will also be S
available via API
22 27 S A\NIER Y - 4
N\

Questions/Comments
ramanathana@anl.gov

S—

z1dsu


mailto:ramanathana@anl.gov
https://github.com/ramanathanlab/genslm

