THE AI REVOLUTION FOR WEATHER AND CLIMATE

TROY ARCOMANO¹, A. WIKNER¹⁴, T. NGUYEN⁶, M. POSKA¹³, R. MAULIK²³, S. MADIREDDY², I. FOSTER³, S. FOREMAN⁵, A. GROVER⁶, R. KOTAMARTHI¹

¹Argonne National Laboratory, Environmental Science Division
²Argonne National Laboratory, Mathematics and Computer Science Division
³Pennsylvania State University
⁴University of Maryland, College Park
⁵Argonne National Laboratory, Argonne Leadership Computing Facility
⁶University of California, Los Angeles, Department of Computer Science

THE QUIET REVOLUTION OF NUMERICAL WEATHER PREDICTION*

- Weather forecasting is a multi-billion enterprise with large socioeconomic impacts
- Currently weather forecasting and climate modeling use physics-based numerical models
- Slow, incremental but steady progress was been made during the last 40 years has lead to a quiet revolution for weather forecasting
 - 1 day of forecast skill per decade
 - Successful predictions of extreme events up to 8 days into the future

Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. *Nature* 525, 47–55 (2015). https://doi.org/10.1038/nature14956 Argonne

THE RISE OF DATA-DRIVEN WEATHER FORECASTING*

- Advances in machine learning architectures, hardware, big data, and financial motivation have set the stage for a paradigm shift in weather forecasting
 - State-of-the-art machine learning-based models have accuracy on par to operational NWP
 - Success has been demonstrated in operational settings
 - The efficiency is orders of magnitude better with 10-day forecasts taking just a few seconds

*Ben-Bouallegue et al. 2023 https://arxiv.org/abs/2307.10128

* ECMWF seminar on data-driven models in operational setting Argonne

DAY 5 FORECAST

DAY 5 FORECAST

MACHINE LEARNING APPLICATIONS

- Data-driven Methods: Use of data-driven techniques for time-series forecasting
 - Independent of physics-based modeling (typically)
- Hybrid modeling: The combination of machine learning with existing traditional, numerical-based models

Operational Products:

- Severe Weather Nadocast
- Ocean Modeling ENSO Prediction
- Hurricane intensity forecasting
- Uncertain Quantification
- Basically everything else

DATA-DRIVEN APPROACH

- Task: Take a snapshot of the 3-d atmosphere and predict the weather for the next 14 days
- Dataset: Use observation-based reanalysis (best guess of the atmosphere)
 ERA5
- Challenges:
 - Image size 721 x 1440
 - Channels 100s to 1000s of channels (each channel represents a 2d field)
 - Adaption software and hardware to these datasets
 - E.g. Complicated loss functions, using ViT for image translation, etc
- Currently using a weather specific ViT to predict the weather

MACHINE LEARNING-BASED WEATHER FORECASTING MODEL – STORMER*

Initial Conditions

5-day Forecast

Ground Truth

Successful 5-day prediction of an extratropical cyclone in late December 2020 which broke the North Pacific pressure record

*Nguyen, T., et. al. , 2023: Sealing transformer neural networks for skillful and reliable medium-range weather forecasting. 2312.03876

STORMER - VISION TRANSFORMER

Using transformer-based machine learning architecture (ViT) based of ClimaX*

*Nguyen, T., J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover, 2023: Climax: A foundation model for weather and climate. 2301.10343.

STORMER - VISION TRANSFORMER

Model :

- Vision transformer backbone
 - adaptive layer normalization (adaLN)
- Variable aggregation and tokenization
 - single-layer cross-attention mechanism
 - Model does not scale by number of channels

STORMER – TRAINING

Time-stepping and Ensemble Generation:

- Trained using randomized lead-time embedding [6,12,24] hrs
 - Free model-based ensembles during inference
- Autoregressive time-stepping

Loss:

- Pressure weighted loss
- Scaling in the output layer
- Training on the "deltas"
- 2 stage training:
 - Optimizing 1-step predictions
 - Fine-tuning using a multi-step lost function (up to 7 days) Direct forecasting
- Training: Model size ~400M and trained using 126 A100 GPUs taking ~24 hours
 CENERGY AMOUNT AND ADDRESS AND ADDRE

 X_T

fθ

 X_0

STORMER - PERFORMANCE

CONCLUSIONS

 The advent of scalable machine learning architectures, vast amounts of quality data, and access a large number of GPUs/TPUs is leading to a paradigm shift for weather forecasting

Climate modeling may soon undergo a similar paradigm shift

- Weather is a great test bed for newly developed ML architectures
 - Large data (PetaBytes)
 - Pushing limit of current hardware and software

QUESTIONS

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BACKUP SLIDES

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

