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THE QUIET REVOLUTION OF NUMERICAL 
WEATHER PREDICTION*
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§ Weather forecasting is a multi-billion 
enterprise with large socioeconomic 
impacts

§ Currently weather forecasting and 
climate modeling use physics-based 
numerical models 

§ Slow, incremental but steady progress 
was been made during the last 40 years 
has lead to a quiet revolution for weather 
forecasting 
– 1 day of forecast skill per decade
– Successful predictions of extreme 

events up to 8 days into the future

Bauer, P., Thorpe, A. & Brunet, G. The quiet 
revolution of numerical weather 
prediction. Nature 525, 47–55 (2015). 
https://doi.org/10.1038/nature14956



THE RISE OF DATA-DRIVEN WEATHER 
FORECASTING*  
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§ Advances in machine learning architectures, hardware, big data, and financial 
motivation have set the stage for a paradigm shift in weather forecasting
– State-of-the-art machine learning-based models have accuracy on par to 

operational NWP 
• Success has been demonstrated in operational settings

– The efficiency is orders of magnitude better with 10-day forecasts taking just a 
few seconds

*Ben-Bouallegue et al. 2023 
https://arxiv.org/abs/2307.10128

* ECMWF seminar on 
data-driven models in 
operational setting
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DAY 5 FORECAST 

https://charts.ecmwf.int/
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ML - ViT

ML - FNO 

Best Traditional 
Weather model 

ML - GNN 

DAY 5 FORECAST  

https://charts.ecmwf.int/



MACHINE LEARNING APPLICATIONS  
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§ Data-driven Methods: Use of data-driven techniques for time-series forecasting
– Independent of physics-based modeling (typically) 

§ Hybrid modeling: The combination of machine learning with existing traditional, 
numerical-based models 

§ Operational Products:
– Severe Weather - Nadocast
– Ocean Modeling - ENSO Prediction
– Hurricane intensity forecasting

§ Uncertain Quantification 

§ Basically everything else



DATA-DRIVEN APPROACH
§ Task: Take a snapshot of the 3-d atmosphere and predict the weather for the next 

14 days

§ Dataset: Use observation-based reanalysis (best guess of the atmosphere) 
– ERA5

§ Challenges:
– Image size – 721 x 1440
– Channels – 100s to 1000s of channels (each channel represents a 2d field)
– Adaption software and hardware to these datasets

• E.g. Complicated loss functions, using ViT for image translation, etc

§ Currently using a weather specific ViT to predict the weather 
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MACHINE LEARNING-BASED WEATHER  
FORECASTING MODEL – STORMER*

8*Nguyen, T., et. al. , 2023: Scaling transformer neural networks for 
skillful and reliable medium-range weather forecasting. 2312.03876

5-day ForecastInitial Conditions 

26 December 2020 00:00 UTC 31 December 2020 00:00 UTC 31 December 2020 00:00 UTC

Ground Truth

m
/s

Successful 5-day prediction of an extratropical cyclone in late 
December 2020 which broke the North Pacific pressure record



STORMER - VISION TRANSFORMER 
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§ Using transformer-based machine learning architecture (ViT) based of ClimaX*

*Nguyen, T., J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover, 
2023: Climax: A foundation model for weather and climate. 2301.10343.



STORMER - VISION TRANSFORMER 
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§ Model : 
– Vision transformer backbone

• adaptive layer normalization 
(adaLN)

– Variable aggregation and 
tokenization 
• single-layer cross-attention 

mechanism
• Model does not scale by 

number of channels



STORMER – TRAINING 
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§ Time-stepping and Ensemble Generation: 
– Trained using randomized lead-time 

embedding [6,12,24] hrs
• Free model-based ensembles during 

inference
– Autoregressive time-stepping

§ Loss:
– Pressure weighted loss
– Scaling in the output layer
– Training on the ”deltas” 
– 2 stage training:

• Optimizing 1-step predictions
• Fine-tuning using a multi-step lost 

function (up to 7 days)
§ Training: Model size ~400M and trained 

using 126 A100 GPUs taking ~24 hours 
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STORMER - PERFORMANCE
RMSE 
(Lower 
is 
better)



CONCLUSIONS
§ The advent of scalable machine learning architectures, vast amounts of 

quality data, and access a large number of GPUs/TPUs is leading to a 
paradigm shift for weather forecasting 

§ Climate modeling may soon undergo a similar paradigm shift

§ Weather is a great test bed for newly developed ML architectures 
– Large data (PetaBytes)
– Pushing limit of current hardware and software
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