

In Situ ML for HPC Simulations

ENEI CY

Riccardo Balin, Filippo Simini, and Ramesh Balakrishnan, Argonne National Laboratory

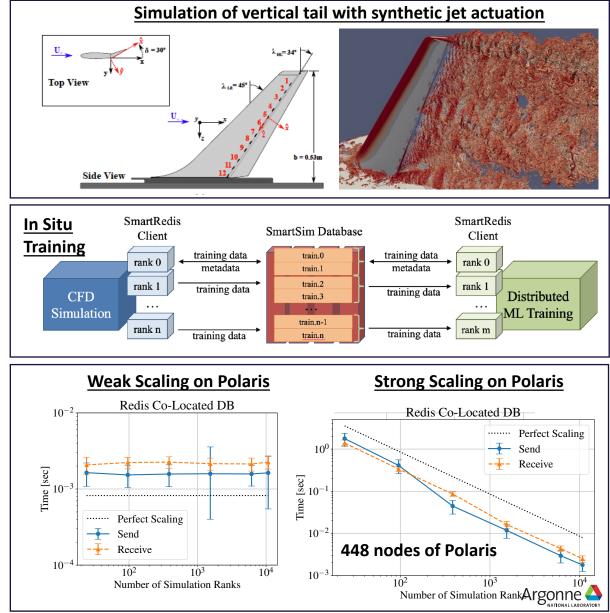
Kenneth E. Jansen, John A. Evans, and Alireza Doostan, University of Colorado Boulder

Hewlett Packard

Data-Intensive Computing and AI/ML Applications at Scale 08/17/2023

intel

In Situ ML for HPC Simulations


Simulation-based design of complex aerodynamic systems needs:

- Accurate physics models (closure/surrogate modeling)
- Understanding of key physical phenomena (visualization)
- Generation of large datasets (O(10⁹-10¹⁰) grid points)

Developed in situ ML framework (CFDML) that offers:

- Inference and training with SmartSim/SmartRedis libraries
- Data streaming to database and avoiding file system IO/storage
- Scalability and negligible overhead on simulation and training
- Efficient use of CPU and GPU resources
- Selection from multiple models at runtime ANN for closure modeling and autoencoder for compression
- Distributed data parallel training with Horovod and DDP
- No dependency on CDF code (PHASTA, libCEED and NekRS)
- Portability (installed on Polaris and Sunspot)

Data transfer overhead on simulation during in situ training	Solver Component	Average [sec]	Standard Deviation [sec]
	Equation formation Equation solution	45.426 453.386	0.678 0.698 - solver time
	Client initialization	0.002	0.001
	Metadata transfer	0.065	0.005
	Training data send	0.120	0.021 << 1% of solver time
Balin et al., "In Situ Framework for Coupling Simulation and Machine Learning with Application to CFD". arXiv:2306.12900, 2023. <u>https://github.com/rickybalin/CFDML</u> .			
2 Argonne Leadership Computing Facility			

In Situ ML for HPC Simulations

Current challenges

- Model architecture and hyperparameters must be tuned offline
- Continual learning from sequentially generated data
- Database may result in performance bottleneck, depending on inferencing needs

 May require more invasive tightly-coupled approach with ML inference libraries (OpenVINO, LibTorch, ONNX)

Future work and longer term goals

- Integration with tools for scalable model discovery and hyperparameter optimization (e.g., DeepHyper, HYPPO)
- Smarter on-the-fly selection of useful simulation snapshots for training
 - —Use UQ and accuracy metrics
 - Conscious of system memory limitations
- Move towards ML-training informed data generation (e.g., AMR and launching supplemental simulations)

Collaboration opportunities

- Framework is not limited to CFD and easily extendable to any computational science
- Always looking for new applications to drive development of in situ ML capabilities

