SOLVING THE QUANTUM MANY-BODY PROBLEM WITH NEURAL NETWORK QUANTUM STATES

ALESSANDRO LOVATO

Data-Intensive Computing \& AI/ML Applications at Scale
17 August, 2023

THE QUANTUM MANY-BODY PROBLEM

Goal: predict the properties of systems made of several quantum particles from the first principles of quantum mechanics.

Multidisciplinary impact: nuclear physics (and high-energy physics), quantum chemistry, condensed matter physics, materials science..

THE QUANTUM MANY-BODY PROBLEM

Goal: predict the properties of systems made of several quantum particles from the first principles of quantum mechanics.

Multidisciplinary impact: nuclear physics (and high-energy physics), quantum chemistry, condensed matter physics, materials science..

CURSE OF DIMENSIONALITY AND NQS

$H \Psi_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots \mathbf{r}_{N}\right)=E_{0} \Psi_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots \mathbf{r}_{N}\right)$

$$
E_{V} \equiv \frac{\left\langle\Psi_{V}\right| H\left|\Psi_{V}\right\rangle}{\left\langle\Psi_{V} \mid \Psi_{V}\right\rangle}>E_{0}
$$

NUCLEAR PHYSICS APPLICATIONS

We developed NQS to solve the many-body problem for nuclei and neutron-star matter

C. Adams, AL, et al., Phys. Rev. Lett. 127, 022502 (2021) AL, et al., Phys. Rev. Res. 4, 043178 (2022)
A. Gnech, AL, et al, Few Body Syst. 63, 1 (2022)
B. Fore, AL et al., Phys. Rev. Res. 5, 033062 (2023)

CONDENSED MATTER APPLICATIONS

We ventured into condensed-matter problems with NQS based on message-passing graph networks

G. Pescia, AL, et al., Phys. Rev. Res. 4 (2022) 023138
G. Pescia, AL, et al., 2305.08831 [cond-mat.quant-gas] 6

[^0]
PATH FORWARD WITH AURORA

Now (Swing, Theta-GPU, Polaris):

- Quantum systems with up to ~ 50 particles on full Polaris with almost ideal scaling;

Aurora:

- Heavy nuclei, (up to Uranium!); relevant for FRIB (@MSU), ATLAS (@Argonne);
- Isospin-asymmetric nuclear matter; direct impact on astrophysical observations;
- Spin-imbalanced Fermi gas closer to the thermodynamic limit;
- Molecules, benchmark with state-of-the-art diffusion Monte Carlo and coupled cluster methods
- Real-time quantum dynamics: Electron and neutrino-nucleus scattering, neutron-star cooling, nuclear fission and fusion, responses of condensed-matter systems;

Ongoing and potential synergies

- Multidisciplinary, ideal for CPS: Corey Adams, Yury Alexeev, Anouar Benali, Noemi Rocco;

Funding:

- DOE Early Career Award,
- DOE-NP-SciDAC, DOE-HEP-SciDAC,
- Argonne LDRD

[^0]: J. Kim, AL, et al. arXiv:2305.08831

