
CONFIDENTAL - ONLY SHARED UNDER NDACONFIDENTAL - ONLY SHARED UNDER NDA

1

DEEP DIVE ON
GRAPH NEURAL
NETWORKS AND
LARGE LANGUAGE
MODELS

July 26, 2023
Alexander Tsyplikhin

GRAPHCORE

2

AGENDA

GNNs
• Graphcore IPUs and PyTorch Geometric
• Case study: SchNet for molecular property prediction

LLMs
• HuggingFace Optimum
• PopART for GPT-3 175B

Q&A

Slides courtesy of AriannaS, AdamS, SteveB, JoshK

IPU – Architectured For AI

3

Massive parallelism with ultrafast memory access

64 GB/s IPU-Link

11000GB/s all-all

32 GB/s PCIe G4

IPU-Tile
236GFLOPS(F16)

640KB SRAM
6 HW Threads

1.83GHz
128 F16Ops/Cycle

BOW IPU
350TFLOPS(F16)

900MB SRAM
1472 IPU-Tiles

8832 independent
instruction streams

BOW-2000 IPU-Machine
4x IPU

256 GB DRAM

6

“As I started applying IPUs for molecular property
predictions, I was shocked to see the speed
improvements over traditional methods.”
Dominique Beaini, Research Team Lead at Valence Discovery
and Associate Professor at Mila

GRAPHCORE IPU ACHIEVES
DOUBLE FIRST PLACE!

1st

GRAPH-LEVEL
PREDICTION

https://ogb.stanford.edu/neurips2022/results/

LINK-LEVEL
PREDICTION

1st

Open Graph Benchmark was established in
2020 with the aim of objectively measuring
the performance of different graph models
and compute systems

https://ogb.stanford.edu/neurips2022/results/

7

• Simulating molecular properties using traditional
methods (like DFT – Dense Functional Theory) is a
very slow process

• Finding the optimal model & implementation
required fast experimentation and innovation to
explore combined benefits of GNN approaches with
transformer-style attention

• The IPUs unique MIMD architecture and ultra-fast
memory bandwidth enables :
• Flexibility for innovation
• High performance for speed of experimentation

• IPUs efficient scaling enabled quick experimentation
on small models & efficient tuning on larger
‘production’ models

https://ogb.stanford.edu/neurips2022/results/

OGB-LSC PCQM4MV2 CHALLENGE
THE IPU ADVANTAGE

1st

OGB-LSC 2022
GRAPH-LEVEL
PREDICTION

PCQM4MV2

https://ogb.stanford.edu/neurips2022/results/

8

• Knowledge graph completion challenge using
WikiKG90Mv2 dataset, based on the knowledge
graph consisting of pages extracted from Wikipedia

• Dataset scale presents a problem for standard
techniques

• This is addressed efficiently by exploitation of the
IPU systems high capacity streaming memory,
supplementing the large and ultra-fast In-Processor
memory & inter-processor communication via IPU-
Links

• This enabled quick iteration across the
hyperparameter space and experimentation with
new ideas, training of hundreds of models to
convergence, and in the end construction of an
ensemble of models for increased predictive power

https://ogb.stanford.edu/neurips2022/results/

OGB-LSC WIKIKG90MV2 CHALLENGE
THE IPU ADVANTAGE

1st

OGB-LSC 2022
LINK-LEVEL
PREDICTION

WIKIKG90MV2

https://ogb.stanford.edu/neurips2022/results/

GRAPHIUM FOR IPU

9

ANNOUNCEMENT | TECHNICAL BLOG | GETTING STARTED

RUN GRAPHIUM ON IPU WITH PAPERSPACE JUPYTER NOTEBOOK

A POWERFUL AND
FLEXIBLE OPEN-

SOURCE PYTHON
LIBRARY FOR TRAINING
MOLECULAR GNNS AT

SCALE

Domain: Molecules
Tasks: Multitask
Model: GCN/GIN/GINE
Datasets: QM9, Zinc, Tox21
Workflow: Training, validation, inference
Execution time: 20 mins

Graphium integrates state-of-the-art Graph Neural Network
(GNN) architectures and a user-friendly API, enabling the easy

construction and training of custom GNN models.

PYTORCH GEOMETRIC FOR IPU

10

ANNOUNCEMENT | TECHNICAL BLOG | GETTING STARTED

pyg.org

Training Dynamic Graphs
TGN

Training

RUN GNN MODELS IN PYG ON PAPERSPACE JUPYTER NOTEBOOKS

Training Large Graphs
Cluster-GCN

Training

Predicting molecular properties
SchNet
Training

Predicting molecular properties
GIN

Training

Link Prediction training
NBFNet
Training

“The suitability of IPUs for running GNNs
and the kind of performance advantage
that Graphcore and its customers have
demonstrated is really helping to accelerate
the uptake of this exciting model class”
Matthias Fey – PyG creator & founder of Kumo.ai

Molecular Modelling with Graphium
GCN/GIN

Training & Inf NEW

11

• Hardware lends itself to GNNs - fast gather scatter operations

• Already possible to run PyTorch on IPUs

• PyTorch Geometric is the PyTorch library to unify deep learning on graph-
structured data

• Aim to make it as easy as possible to use PyTorch Geometric on IPUs and start
accelerating your GNNs

PYTORCH GEOMETRIC + IPU

AHEAD OF TIME COMPILATION

12

What?
• The model is compiled into a single compute

graph with forward and backward passes.

Compiled
graph

IPU

PyTorch
model

Why?
• Efficient memory & communication
• Allows optimisations to be applied during

compilation

What does it mean for you?
• All tensors in your model must be fixed size
• This includes the model inputs

0

1

2

Mini-batch 1

4

3

5

Mini-batch 2

6

7

8

Mini-batch 3

PYG MINI-BATCHING OF SMALL GRAPHS

Mini-batching
(batch size 3)

Adjacency of each mini-
batch

Sparse representation of
each mini-batch

0

1

2

4

5 7

Adjacency of samples in
dataset

3

6

8

0 1 2 43 5 6 7 8

• Message passing just works!

• Do we have to do any masking?

FIXED SIZE MINI BATCHING

Adjacency
of each
mini-batch

Sparse
representation
of each mini-
batch

0

1

2

Mini-batch 1

P

4

3

5

Mini-batch 2

P

6

7

8

Mini-batch 3

P

0 1 2 P 43 5 P 6 7 8 P

FIXED SIZE INPUTS WITH PACKING

15

Stream packing

Global packing
https://arxiv.org/abs/2209.06354

Adjacency
of each
mini-batch

4

5

Mini-batch 2

6
P

0

1

2

Mini-batch 1

P
3

7

8

Mini-batch 3

P

9

10

11

Sparse
representati
on of each
mini-batch

0 1 2 P3 4 5 P6 7 8 P9 10 11

AND OTHER DYNAMIC THINGS

17

Other operations in your model may be dynamic that you wouldn't expect

Adding self-loops

Using masks of different sizes each batch

RUNNING PYG ON IPUS: POPTORCH

18

Poplar® SDK

PopTorch compiles PyTorch models into Poplar executables

RUNNING PYG ON IPUS: POPTORCH GEOMETRIC
PopTorch Geometric enables GNN models to be run on Graphcore IPUs

BENCHMARKING MESSAGE PASSING AS
GATHER/SCATTER OPERATIONS

Gather
Messages are collected from

neighboring nodes

Scatter(-add)
Messages are aggregated along

outbound edges

Original graph
x1 target node

<latexit sha1_base64="3BKtgEbKz5FVMWBSqsDjxL1NPns=">AAACgnicbVFdb9MwFHWyAaN8dfDIi0U10aKpJGxjPIA0jRee0JDoNqmOIse9Td05TmTfTKus/BD+Fm/8GnCzCLGNK1k6Oud+HmeVkhaj6FcQbmzeu/9g62Hv0eMnT5/1t5+f2rI2AiaiVKU5z7gFJTVMUKKC88oALzIFZ9nF57V+dgnGylJ/x1UFScFzLedScPRU2v/BLkG4qyaVrz9RlvOi4JQdy1wN/wq7lNV65nsAuiVlUFmpSk1ZwXEhuHJfm6EcNY4hXKHjeW4g5whNQ1nm+0wpqxbyRrcOLjsITeqWu7IZtQUmaeebUdofROOoDXoXxB0YkC5O0v5PNitFXYBGobi10ziqMHHcoBQKmh6rLVRcXPAcph5qXoBNXGthQ3c8M6Pz0vinkbbsvxWOF9auisxnru+2t7U1+T9tWuP8Q+KkrmoELa4HzWtFsaTr/6AzaUCgWnnAhZF+VyoW3HCB3vGeNyG+ffJdcPpuHL8fH3zbHxwdd3ZskZfkFRmSmBySI/KFnJAJEeR3sBOMg7fhZvgmjMO969Qw6GpekBsRfvwD/FDECw==</latexit>

~x0
i = �

⇣
~xi, aggregate

j✏N (i)

⇥
�(~xi, ~xj ,~ej,i)

⇤⌘

GatherScatter-reduce

MessageUpdate

HIGH PERFORMANCE SCATTER-ADD ON IPUS
For small scatter input size, IPU achieves >16x speedups vs GPU

Graphcore BOW-M2000 vs NVIDIA A100 (1x, blue plane)

HIGH PERFORMANCE GATHER ON IPUS
For small gather input size, IPU achieves >8x speedups vs GPU

Graphcore BOW-M2000 vs NVIDIA A100 (1x, blue plane)

HIGH PERFORMANCE GATHER-SCATTER OPS ON IPUS

Why faster on IPUs?
• Large, high bandwidth on-chip SRAM.
• Support for fine-grained parallelism.
• Fast all-to-all communication links.

CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Training on Graphcore IPUs with PyG

Molecular property
prediction on IPU using

SchNet - Training

Use the QM9 dataset from MoleculeNet to train the SchNet model to predict a graph-level
property, the HOMO-LUMO energy gap

CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough
QM9 dataset
Molecular properties of interest to train SchNet are:
• z atomic number for each atom in the molecule
• pos contains the 3D structure of the molecule
• y contains the 19 regression targets: we slice it y[:,4] where the HOMO-LUMO gap is

stored

CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough
Data loading and mini-
batching

AOT compilation requirement on IPU
The mini-batches will need to be adapted to be fixed size

Padding individual dataset samples

CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough

Efficient data loading: padding the mini-batch

The mini-batches have now the same sizes

Train SchNet on IPU

Recreate the data loader to pass it the selected hyperparameters and options, define the model
and compile it on IPU:

Select your hyperparameters and PopTorch options:

CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough

Train SchNet on IPU

Define the training loop and finally plot the mean of the loss

CASE STUDY: SCHNET FOR MOLECULAR
PROPERTY PREDICTION

Notebook walkthrough

TRY OUR GNN NOTEBOOKS IN THE CLOUD

Training dynamic graphs
on IPUs using Temporal
Graph Networks (TGN)

Molecular property
prediction on IPU using

SchNet - Training

Node Classification on
IPU using Cluster-GCN -

Training

Molecular property
prediction on IPU using

GIN - Training

Training NBFnet for
inductive knowledge
graph link prediction

Molecular property
prediction using GPS++
(OGB-LSC) - Inference

Molecular property
prediction using GPS++

(OGB-LSC) - Training

Link prediction training for
knowledge graphs using

Distributed KGE (OGB-LSC)

graphcore.ai/ipu-jupyter-notebooks

35

LARGE LANGUAGE MODELS

Data Parallelism (DP)

Duplicat
e model

Device set 1

Device set 2

Device set 3

Modes of Execution

42

Device set 1

Device set 2

Tensor Parallelism (TP)

Device Execution queue

Phased Execution (PE)

Matmul TP
• Consider sharding a matmul in two ways:

43

𝑓(𝑋) = 𝑋𝐴

𝑋𝐴 = 𝑋! 𝑋"
𝑋# 𝑋$

𝐴! 𝐴"
𝐴# 𝐴$

𝑋𝐴 = 𝑋!𝐴! + 𝑋"𝐴# 𝑋!𝐴" + 𝑋"𝐴$
𝑋#𝐴! + 𝑋$𝐴# 𝑋#𝐴" +𝑋$ 𝐴$

= 𝑋𝐴% 𝑋𝐴&

Concatenation

𝑋 → 𝑛,𝑚
𝐴 → 𝑚, 𝑘

𝑋! 𝑋"
𝑋# 𝑋$

𝐴! 𝐴"
𝐴# 𝐴$

=

𝐴% → 𝑚, 𝑘%
𝐴& → 𝑚, 𝑘&

𝐴% → 𝑚%, 𝑘
𝐴& → 𝑚& , 𝑘

𝑋% → 𝑛,𝑚%

𝑋& → 𝑛,𝑚&

𝑋! 𝑋"
𝑋# 𝑋$

𝐴!
𝐴#

𝑋! 𝑋"
𝑋# 𝑋$

𝐴"
𝐴$

𝑋!
𝑋#

𝐴! 𝐴" + 𝑋"
𝑋$

𝐴# 𝐴$

= 𝑋%𝐴% + 𝑋&𝐴&

Summation

𝑋𝐴, 𝑋𝐴 ∶= AllGather(𝑋𝐴%, 𝑋𝐴&)

Column-wise sharding:
𝑋𝐴, 𝑋𝐴 ∶= AllReduce(𝑋%𝐴%, 𝑋&𝐴&)

Row-wise sharding:

𝑋! 𝑋"
𝑋# 𝑋$

𝐴! 𝐴"
𝐴# 𝐴$

=

44

Matmul

Feed-Forward Layer: No Parallelism

X Key:
Data

Op

Y

LayerNorm

Gelu

Matmul Z

X

Data/
Op output

Standard

X [s, h]

Y [h, 4h]

X := X @ Y [s, 4h]

Z [4h, h]

X := X @ Z [s, h]

Shapes

45

Matmul

Feed-Forward Layer: 1D Tensor Parallelism

AllReduce
(Grad)

X Key:

Output
scheme:

Data

Op

Device Set
A

Device Set
B

Column-
partitioned

Row-
partitioned

Replicated

Y

LayerNorm

Gelu

Matmul

AllReduce
(Fwd)

Z

X

Partial

Data/
Op output

Standard 1DTP

X [s, h] [s, h]

Y [h, 4h] [h, 4h/tp1]

X := X @ Y [s, 4h] [s, 4h/tp1]

Z [4h, h] [4h/tp1, h]

X := X @ Z [s, h] [s, h]

Shapes

46

Matmul

Feed-Forward Layer: 2D Tensor Parallelism

AllReduce
(Grad - TP1)

X Key:

Output
scheme:

Data

Op

TP1 Set A

TP1 Set B

Column-
partitioned

Row-
partitioned

Replicated

Y

TP2 Set A

TP2 Set B

Multi-
partitioned

TPLayerNorm

Gelu

Matmul

AllReduce
(TP2)

AllReduce
(Fwd - TP1)

Z

Data/
Op output

Standard 1DTP 2DTP

X [s, h] [s, h] [s, h/tp2]

Y [h, 4h] [h, 4h/tp1] [h/tp2, 4h/tp1]

X := X @ Y [s, 4h] [s, 4h/tp1] [s, 4h/tp1]

Z [4h, h] [4h/tp1, h] [4h/tp1, h/tp2]

X := X @ Z [s, h] [s, h] [s, h/tp2]

Shapes

X
Partial

47

Model-Device Mapping

Pod 256 TP1 Groups (size 8, stride 8)

Group 1Group 3

48

APPLY AND JOIN TODAY

Apply at alcf.anl.gov/science/directors-
discretionary-allocation-program

Join at graphcore.ai/join-community

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.graphcore.ai/join-community

51

THANK YOU!

Q&A

