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AGENDA

GNNs
• Graphcore IPUs and PyTorch Geometric
• Case study: SchNet for molecular property prediction

LLMs
• HuggingFace Optimum
• PopART for GPT-3 175B

Q&A

Slides courtesy of AriannaS, AdamS, SteveB, JoshK



IPU – Architectured For AI
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Massive parallelism with ultrafast memory access



64 GB/s  IPU-Link

11000GB/s all-all

32 GB/s  PCIe G4

IPU-Tile 
236GFLOPS(F16) 

640KB SRAM
6 HW Threads 

1.83GHz
128 F16Ops/Cycle

BOW IPU
350TFLOPS(F16) 

900MB SRAM
1472 IPU-Tiles

8832 independent 
instruction streams

BOW-2000 IPU-Machine
4x IPU

256 GB DRAM
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“As I started applying IPUs for molecular property 
predictions, I was shocked to see the speed 
improvements over traditional methods.” 
Dominique Beaini, Research Team Lead at Valence Discovery 
and Associate Professor at Mila

GRAPHCORE IPU ACHIEVES
DOUBLE FIRST PLACE!

1st

GRAPH-LEVEL
PREDICTION

https://ogb.stanford.edu/neurips2022/results/

LINK-LEVEL
PREDICTION

1st

Open Graph Benchmark was established in 
2020 with the aim of objectively measuring 
the performance of different graph models 
and compute systems

https://ogb.stanford.edu/neurips2022/results/
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• Simulating molecular properties using traditional 
methods (like DFT – Dense Functional Theory) is a 
very slow process

• Finding the optimal model & implementation 
required fast experimentation and innovation to 
explore combined benefits of GNN approaches with 
transformer-style attention

• The IPUs unique MIMD architecture and ultra-fast 
memory bandwidth enables :
• Flexibility for innovation
• High performance for speed of experimentation

• IPUs efficient scaling enabled quick experimentation 
on small models & efficient tuning on larger 
‘production’ models

https://ogb.stanford.edu/neurips2022/results/

OGB-LSC PCQM4MV2 CHALLENGE
THE IPU ADVANTAGE

1st

OGB-LSC 2022
GRAPH-LEVEL 
PREDICTION

PCQM4MV2

https://ogb.stanford.edu/neurips2022/results/
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• Knowledge graph completion challenge using 
WikiKG90Mv2 dataset, based on the knowledge 
graph consisting of pages extracted from Wikipedia

• Dataset scale presents a problem for standard 
techniques

• This is addressed efficiently by exploitation of the 
IPU systems high capacity streaming memory, 
supplementing the large and ultra-fast In-Processor 
memory & inter-processor communication via IPU-
Links

• This enabled quick iteration across the 
hyperparameter space and experimentation with 
new ideas, training of hundreds of models to 
convergence, and in the end construction of an 
ensemble of models for increased predictive power

https://ogb.stanford.edu/neurips2022/results/

OGB-LSC WIKIKG90MV2 CHALLENGE
THE IPU ADVANTAGE

1st

OGB-LSC 2022
LINK-LEVEL
PREDICTION

WIKIKG90MV2

https://ogb.stanford.edu/neurips2022/results/


GRAPHIUM FOR IPU
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ANNOUNCEMENT | TECHNICAL BLOG | GETTING STARTED

RUN GRAPHIUM ON IPU WITH PAPERSPACE JUPYTER NOTEBOOK

A POWERFUL AND 
FLEXIBLE OPEN-

SOURCE PYTHON 
LIBRARY FOR TRAINING 
MOLECULAR GNNS AT 

SCALE

Domain: Molecules
Tasks: Multitask
Model: GCN/GIN/GINE
Datasets: QM9, Zinc, Tox21
Workflow: Training, validation, inference
Execution time: 20 mins

Graphium integrates state-of-the-art Graph Neural Network 
(GNN) architectures and a user-friendly API, enabling the easy 

construction and training of custom GNN models.



PYTORCH GEOMETRIC FOR IPU
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ANNOUNCEMENT | TECHNICAL BLOG | GETTING STARTED

pyg.org

Training Dynamic Graphs
TGN

Training

RUN GNN MODELS IN PYG ON PAPERSPACE JUPYTER NOTEBOOKS

Training Large Graphs
Cluster-GCN

Training

Predicting molecular properties
SchNet
Training

Predicting molecular properties
GIN

Training

Link Prediction training
NBFNet
Training

“The suitability of IPUs for running GNNs 
and the kind of performance advantage 
that Graphcore and its customers have 
demonstrated is really helping to accelerate 
the uptake of this exciting model class”
Matthias Fey – PyG creator & founder of Kumo.ai

Molecular Modelling with Graphium
GCN/GIN

Training & Inf NEW
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• Hardware lends itself to GNNs - fast gather scatter operations

• Already possible to run PyTorch on IPUs

• PyTorch Geometric is the PyTorch library to unify deep learning on graph-
structured data

• Aim to make it as easy as possible to use PyTorch Geometric on IPUs and start 
accelerating your GNNs

PYTORCH GEOMETRIC + IPU



AHEAD OF TIME COMPILATION
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What?
• The model is compiled into a single compute 

graph with forward and backward passes.

Compiled 
graph

IPU

PyTorch 
model

Why?
• Efficient memory & communication
• Allows optimisations to be applied during 

compilation

What does it mean for you?
• All tensors in your model must be fixed size
• This includes the model inputs
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PYG MINI-BATCHING OF SMALL GRAPHS

Mini-batching
(batch size 3)

Adjacency of each mini-
batch

Sparse representation of 
each mini-batch
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• Message passing just works!

• Do we have to do any masking?

FIXED SIZE MINI BATCHING

Adjacency 
of each 
mini-batch

Sparse 
representation 
of each mini-
batch
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2

Mini-batch 1

P
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Mini-batch 2

P
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7

8

Mini-batch 3

P

0 1 2 P 43 5 P 6 7 8 P



FIXED SIZE INPUTS WITH PACKING
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Stream packing

Global packing
https://arxiv.org/abs/2209.06354

Adjacency 
of each 
mini-batch
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AND OTHER DYNAMIC THINGS
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Other operations in your model may be dynamic that you wouldn't expect

Adding self-loops

Using masks of different sizes each batch



RUNNING PYG ON IPUS: POPTORCH
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Poplar® SDK

PopTorch compiles PyTorch models into Poplar executables



RUNNING PYG ON IPUS: POPTORCH GEOMETRIC
PopTorch Geometric enables GNN models to be run on Graphcore IPUs



BENCHMARKING MESSAGE PASSING AS 
GATHER/SCATTER OPERATIONS

Gather
Messages are collected from 

neighboring nodes

Scatter(-add) 
Messages are aggregated along 

outbound edges

Original graph
x1 target node

<latexit sha1_base64="3BKtgEbKz5FVMWBSqsDjxL1NPns="></latexit>

~x0
i = �

⇣
~xi, aggregate

j✏N (i)

⇥
�(~xi, ~xj ,~ej,i)

⇤⌘

GatherScatter-reduce

MessageUpdate



HIGH PERFORMANCE SCATTER-ADD ON IPUS
For small scatter input size, IPU achieves >16x speedups vs GPU

Graphcore BOW-M2000 vs NVIDIA A100 (1x, blue plane)



HIGH PERFORMANCE GATHER ON IPUS
For small gather input size, IPU achieves >8x speedups vs GPU

Graphcore BOW-M2000 vs NVIDIA A100 (1x, blue plane)



HIGH PERFORMANCE GATHER-SCATTER OPS ON IPUS

Why faster on IPUs?
• Large, high bandwidth on-chip SRAM.
• Support for fine-grained parallelism.
• Fast all-to-all communication links.



CASE STUDY: SCHNET FOR MOLECULAR 
PROPERTY PREDICTION

Training on Graphcore IPUs with PyG

Molecular property 
prediction on IPU using 

SchNet - Training

Use the QM9 dataset from MoleculeNet to train the SchNet model to predict a graph-level 
property, the HOMO-LUMO energy gap



CASE STUDY: SCHNET FOR MOLECULAR 
PROPERTY PREDICTION

Notebook walkthrough
QM9 dataset
Molecular properties of interest to train SchNet are:
• z atomic number for each atom in the molecule
• pos contains the 3D structure of the molecule
• y contains the 19 regression targets: we slice it y[:,4] where the HOMO-LUMO gap is 

stored



CASE STUDY: SCHNET FOR MOLECULAR 
PROPERTY PREDICTION

Notebook walkthrough
Data loading and mini-
batching

AOT compilation requirement on IPU
The mini-batches will need to be adapted to be fixed size

Padding individual dataset samples



CASE STUDY: SCHNET FOR MOLECULAR 
PROPERTY PREDICTION

Notebook walkthrough

Efficient data loading: padding the mini-batch

The mini-batches have now the same sizes 



Train SchNet on IPU

Recreate the data loader to pass it the selected hyperparameters and options, define the model 
and compile it on IPU:

Select your hyperparameters and PopTorch options:

CASE STUDY: SCHNET FOR MOLECULAR 
PROPERTY PREDICTION

Notebook walkthrough



Train SchNet on IPU

Define the training loop and finally plot the mean of the loss

CASE STUDY: SCHNET FOR MOLECULAR 
PROPERTY PREDICTION

Notebook walkthrough



TRY OUR GNN NOTEBOOKS IN THE CLOUD

Training dynamic graphs 
on IPUs using Temporal 
Graph Networks (TGN)

Molecular property 
prediction on IPU using 

SchNet - Training

Node Classification on 
IPU using Cluster-GCN -

Training

Molecular property 
prediction on IPU using 

GIN - Training

Training NBFnet for 
inductive knowledge 
graph link prediction

Molecular property 
prediction using GPS++ 
(OGB-LSC) - Inference

Molecular property 
prediction using GPS++ 

(OGB-LSC) - Training

Link prediction training for 
knowledge graphs using 

Distributed KGE (OGB-LSC)

graphcore.ai/ipu-jupyter-notebooks
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LARGE LANGUAGE MODELS















Data Parallelism (DP)

Duplicat
e model

Device set 1

Device set 2

Device set 3

Modes of Execution

42

Device set 1

Device set 2

Tensor Parallelism (TP)

Device Execution queue

Phased Execution (PE)



Matmul TP
• Consider sharding a matmul in two ways:
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𝑓(𝑋) = 𝑋𝐴

𝑋𝐴 = 𝑋! 𝑋"
𝑋# 𝑋$

𝐴! 𝐴"
𝐴# 𝐴$

𝑋𝐴 = 𝑋!𝐴! + 𝑋"𝐴# 𝑋!𝐴" + 𝑋"𝐴$
𝑋#𝐴! + 𝑋$𝐴# 𝑋#𝐴" +𝑋$ 𝐴$

= 𝑋𝐴% 𝑋𝐴&

Concatenation

𝑋 → 𝑛,𝑚
𝐴 → 𝑚, 𝑘

𝑋! 𝑋"
𝑋# 𝑋$

𝐴! 𝐴"
𝐴# 𝐴$

=

𝐴% → 𝑚, 𝑘%
𝐴& → 𝑚, 𝑘&

𝐴% → 𝑚%, 𝑘
𝐴& → 𝑚& , 𝑘

𝑋% → 𝑛,𝑚%

𝑋& → 𝑛,𝑚&

𝑋! 𝑋"
𝑋# 𝑋$

𝐴!
𝐴#

𝑋! 𝑋"
𝑋# 𝑋$

𝐴"
𝐴$

𝑋!
𝑋#

𝐴! 𝐴" + 𝑋"
𝑋$

𝐴# 𝐴$

= 𝑋%𝐴% + 𝑋&𝐴&

Summation

𝑋𝐴, 𝑋𝐴 ∶= AllGather(𝑋𝐴%, 𝑋𝐴&)

Column-wise sharding:
𝑋𝐴, 𝑋𝐴 ∶= AllReduce(𝑋%𝐴%, 𝑋&𝐴&)

Row-wise sharding:

𝑋! 𝑋"
𝑋# 𝑋$

𝐴! 𝐴"
𝐴# 𝐴$

=
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Matmul

Feed-Forward Layer: No Parallelism

X Key:
Data

Op

Y

LayerNorm

Gelu

Matmul Z

X

Data/
Op output

Standard

X [s, h]

Y [h, 4h]

X := X @ Y [s, 4h]

Z [4h, h]

X := X @ Z [s, h]

Shapes
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Matmul

Feed-Forward Layer: 1D Tensor Parallelism

AllReduce
(Grad)

X Key:

Output 
scheme:

Data

Op

Device Set 
A

Device Set 
B

Column-
partitioned

Row-
partitioned

Replicated

Y

LayerNorm

Gelu

Matmul

AllReduce
(Fwd)

Z

X

Partial

Data/
Op output

Standard 1DTP

X [s, h] [s, h]

Y [h, 4h] [h, 4h/tp1]

X := X @ Y [s, 4h] [s, 4h/tp1]

Z [4h, h] [4h/tp1, h]

X := X @ Z [s, h] [s, h]

Shapes
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Matmul

Feed-Forward Layer: 2D Tensor Parallelism

AllReduce
(Grad - TP1)

X Key:

Output 
scheme:

Data

Op

TP1 Set A

TP1 Set B

Column-
partitioned

Row-
partitioned

Replicated

Y

TP2 Set A

TP2 Set B

Multi-
partitioned

TPLayerNorm

Gelu

Matmul

AllReduce
(TP2)

AllReduce
(Fwd - TP1)

Z

Data/
Op output

Standard 1DTP 2DTP

X [s, h] [s, h] [s, h/tp2]

Y [h, 4h] [h, 4h/tp1] [h/tp2, 4h/tp1]

X := X @ Y [s, 4h] [s, 4h/tp1] [s, 4h/tp1]

Z [4h, h] [4h/tp1, h] [4h/tp1, h/tp2]

X := X @ Z [s, h] [s, h] [s, h/tp2]

Shapes

X
Partial
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Model-Device Mapping

Pod 256 TP1 Groups (size 8, stride 8)

Group 1Group 3
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APPLY AND JOIN TODAY

Apply at alcf.anl.gov/science/directors-
discretionary-allocation-program

Join at graphcore.ai/join-community

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.graphcore.ai/join-community
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THANK YOU!

Q&A


