
Copyright © 2023 SambaNova Systems

July 12, 2023

LLMs on
SambaNova:
An Example

Copyright © 2023 SambaNova Systems

The following is intended to outline our general product direction at this time. There is no
obligation to update this presentation and the Company’s products and direction are always
subject to change. This presentation is intended for information purposes only and may not
be relied upon for any purchasing, partnership, or other decisions.

Safe Harbor Statement

2

Copyright © 2023 SambaNova Systems

Agenda

● Use Case
○ Model
○ Data

● Implementation

● Results & Discussion

Copyright © 2023 SambaNova Systems

The Use Case

● A generative model for sentiment analysis

● We will be using a model and dataset from HuggingFace
○ This is a common use case
○ What we show here can be applied to any LLM, even those you have built yourself

● Model:
○ GPT-2 (link)

● Dataset:
○ SST2 (link)

https://huggingface.co/gpt2
https://huggingface.co/datasets/sst2

Copyright © 2023 SambaNova Systems

Training

Copyright © 2023 SambaNova Systems

Basic Setup
● Configure your input arguments for compilation and running
● Create dummy inputs for graph tracing
● Prepare your input data

○ Any LLM will expect certain types of input with specific shapes
○ In the case of this GPT-2 model, in addition to the raw data, it will also take in position IDs, labels (input IDs

shifted by 1 position), and target token type IDs that match the labels
● Create Torch DataLoaders to iterate over the input data
● Define the Optimizers
● Define the training loop

○ While not strictly necessary, you can also define an evaluation loop
○ Convert Torch Tenors to SambaTensors

● Convert the model graph from Torch to Samba
● Compile the model to run on RDU
● Run the model on RDU to train
● Deploy

Copyright © 2023 SambaNova Systems

Input Arguments - Common

● These are arguments you pass to
your model from the command
line

● You define them in your code
and pass them to SambaFlow

● These arguments are used during
compilation and/or running

Copyright © 2023 SambaNova Systems

Input Arguments - Running

● These arguments are
used for training the
model

Copyright © 2023 SambaNova Systems

Dummy Inputs for Compilation

● In order for the SambaFlow
compiler to map the model
graph onto an RDU, it must
trace how the model’s
input tensors change shape
to produce the final output
tensors

● This doesn’t require actual
data, only tensors of the
same shape

● Note the call to
samba.from_torch_tensor()
○ The RDU manipulates

SambaTensors, not Torch
Tensors

Copyright © 2023 SambaNova Systems

Prepare Inputs

● This creates:
○ Position IDs
○ Labels
○ Target Token Type IDs

● These tensors aren’t part of the
dataset, but are needed by the
model
○ Their shape and values will be

dependent on the dataset,
though

● The output tuple of tensors of this
function should be the same
shape as the dummy tensors
used during tracing

Copyright © 2023 SambaNova Systems

Prepare Inputs - What are SambaTensors?

● SambaFlow works with SambaTensors, which are a wrapper around Torch Tensors
○ Each has a unique name for tracing as well as a batch_dim for optimization

● Conversion from Torch Tensors to SambaTensors is easy:
○ samba.from_torch_tensor(<torch_tensor>, name=”<x>”)

Copyright © 2023 SambaNova Systems

Data Loading - Training

● Create a set of DataLoaders over the training data files, one DataLoader per file
● We provide a wrapper, PretrainingGenerativeDataset, that creates a Torch Dataset object for

each data file
● By setting drop_last=True in the DataLoader, we avoid having to pad the batch dimension

Copyright © 2023 SambaNova Systems

Data Loading - Evaluation

● Create a set of DataLoaders
over the training data files, one
DataLoader per file

● We provide a wrapper,
PretrainingGenerativeDataset,
that creates a Torch Dataset
object for each data file

● By setting drop_last=True in the
DataLoader, we avoid having
to pad the batch dimension

Copyright © 2023 SambaNova Systems

Data Loading - Creating Torch Datasets

● We add an additional field to the dataset: token_type_ids

Copyright © 2023 SambaNova Systems

Define Optimizers

● SambaFlow has built-in
optimizers

● We’ll use AdamW
○ It provides good convergence

for Transformer models

Copyright © 2023 SambaNova Systems

Single Model Step

● Scale loss depending on the labels
indicating padding tokens/ignored
indices during this step
○ Use to initialize RDU gradient tensor

for this step
● To run, call samba.session.run():

○ Pass in input tensors
○ Pass in the traced outputs (initially

from the compilation)
○ The hyperparam_dict allows one to

pass in values that can change
during runtime, e.g., the LR

○ Specify which sections to run - an
RDU can run the Forward,
Backward, Gradient and Optimizer
passes simultaneously

● Return the loss
○ Convert back to Torch Tensor for

later evaluation on CPU
○ Apply loss scale factor and sum

over the tensor to get final value

Copyright © 2023 SambaNova Systems

Training Loop

● The outermost loop checks for completion, based on the number of given training steps
○ It gets the training DataLoaders: get_epoch_train_iterators()
○ It’s here, after training completes, that evaluation happens: evaluate()

● The innermost training loop iterates over batches from the current DataLoader from the next
innermost loop
○ It prepares the inputs for processing: prepare_inputs()
○ Then does 1 step of training on RDU: model_step()

● Upon completion, a checkpoint is created: save_checkpoint()

Copyright © 2023 SambaNova Systems

Evaluation

● Get the evaluation DataLoaders:
get_eval_iterators()

● The outermost loop iterates over the DataLoaders
● The next inner loop iterates over batches from the

current DataLoader:
○ Prepares inputs: prepare_input()
○ Converts the tensors to SambaTensors:

get_runtime_inputs()
○ Runs only the forward pass: samba.session.run()
○ Saves the logits

● The innermost loop iterates over each sample in
the current batch:
○ It gets the actual targets for the sample
○ Uses the sample’s logit to predict labels
○ Samples that have no completion token are ignored
○ Saves the index of target token type ID of the sample

if it matches the completion token type ID
○ Save target label and the prediction at that index

● As in the single model step, we compute the loss
scale to the loss from run()

● Compute total eval loss and final eval accuracy:
exact_match_accuracy()

Copyright © 2023 SambaNova Systems

Tying it all together

● Bring in all of the args: parse_app_args()
● We use a pretrained GPT-2 model from HF:

○ We can pull the model and its config from
HF:
■ AutomodelForCausalLM.from_pretrained()

○ Or, we can provide our own config file to
pass to HF:
■ AutoConfig.from_pretrained()
■ AutoModelForCausalLM.from_config()

● Train the HF model
● Patch the model to improve RDU

performance: patch_model()
● Convert model to Samba:

samba.from_torch_model_()
● Get dummy inputs: get_compile_inputs()
● Get optimizers: get_optimizers()
● Compile the model with:

samba.session.compile()
● Train the model on RDU

○ utils.trace_graph()
○ train()

Copyright © 2023 SambaNova Systems

Patching a Model
● Patching an HF model can improve

overall performance on RDU
● Not every model will need patching

Copyright © 2023 SambaNova Systems

Helpful Functions

● Optional, but helpful functions
○ exact_match_accuracy()
○ save_checkpoint()
○ load_checkpoint()

Copyright © 2023 SambaNova Systems

Compile & Training Commands

SN_NUM_THREADS=32 python tutorial_train.py compile \
--max_seq_length 1024 \
-b 16 \
--config_name <path/to/config.json> \
--weight_decay 0.1 \
--max_grad_norm_clip 1.0 \
--model_name_or_path gpt2 \
--num_tiles 4 \
--pef <name_of_pef>

SN_NUM_THREADS=32 python tutorial_train.py run \
--max_seq_length 1024 \
-b 16 \
--weight_decay 0.1 \
--max_grad_norm_clip 1.0 \
--data_dir <path/to/dataset> \
--checkpoint_name <name_of_checkpoint> \
--model_name_or_path gpt2 \
--steps 800 \
--num_tiles 4 \
--min_eval_acc 0.87 \
--pef <path/to/pef>

Compile Command Training Command

Copyright © 2023 SambaNova Systems

Configuration File

{
"activation_function": "gelu_new",
"architectures": [
"GPT2LMHeadModel"

],
"attn_pdrop": 0.1,
"bos_token_id": 50256,
"embd_pdrop": 0.1,
"eos_token_id": 50256,
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"model_type": "gpt2",
"n_ctx": 1024,
"n_embd": 768,

"n_head": 12,
"n_layer": 12,
"n_positions": 1024,
"resid_pdrop": 0.1,
"summary_activation": null,
"summary_first_dropout": 0.1,
"summary_proj_to_labels": true,
"summary_type": "cls_index",
"summary_use_proj": true,
"task_specific_params": {
"text-generation": {
"do_sample": true,
"max_length": 50

}
},
"vocab_size": 50257

}

Copyright © 2023 SambaNova Systems

Generation

Copyright © 2023 SambaNova Systems

Basic Setup for Generation

● It’s purposely very similar to the training setup
● Configure you input arguments for compilation and running
● Create dummy inputs for graph tracing
● This is where the generative model differs:

○ It is an inference model, so there is no input data to train with
■ We don’t need DataLoaders, optimizers or a training loop

○ It still needs to be compiled, but we will compile for inference only
○ Weights will be loaded from the checkpoint previously created by the training model
○ The prompts that will be used to make predictions will need processing

● Convert the model graph from Torch to Samba
● Compile the model to run inference on RDU
● Run the model on RDU to generate predictions

Copyright © 2023 SambaNova Systems

Input Arguments - Common & Running

● These are arguments you pass to
your model from the command
line

● You define them in your code
and pass them to SambaFlow

● These arguments are used during
compilation and running

Copyright © 2023 SambaNova Systems

Dummy Inputs for Compilation

● In order for the SambaFlow
compiler to map the model
graph onto an RDU, it must
trace how the model’s
input tensors change shape
to produce the final output
tensors

● This doesn’t require actual
data, only tensors of the
same shape

● Note the call to
samba.from_torch_tensor()
○ The RDU manipulates

SambaTensors, not Torch
Tensors

Copyright © 2023 SambaNova Systems

Prepare Inputs

● This creates:
○ Input IDs
○ Attention Mask
○ Position IDs

● Tensors are converted to
SambaTensors

Copyright © 2023 SambaNova Systems

Generate Predictions

● Load the checkpoint
● Define the single model step

○ Unlike previous version, this one handles
preparing its inputs: get_runtime_inputs()

○ As this is inference, samba.session.run()
only needs to run the forward pass to get
the logits

○ This function will be called in place of the
model’s original forward()

○ So, it returns a
CausalLMOuputWithCrossAttentions()
object

● Use the GPT-2 tokenizer
● The prompt file is in .jsonl format,

GenerativeDataset() converts it to a
Torch Dataset

● Finally, iterate over the dataset,
tokenizing the prompts
○ Generate predictions via the model’s HF

generate() function
○ Decode the generated tokens into text

Copyright © 2023 SambaNova Systems

Patching a Model
● Patching an HF model can improve

overall performance on RDU
● Not every model will need patching
● This patch is very similar to the one

previously used

Copyright © 2023 SambaNova Systems

Tying it all together

● The main() function for generation is
very similar to the previous main()
for training

● The most significant difference is
that for compilation, the inference
argument will be True

● The generated predictions will be
output to standard out

Copyright © 2023 SambaNova Systems

Compile & Inference Commands

SN_NUM_THREADS=32 python tutorial_train.py compile \
--inference \
--max_seq_length 1024 \
-b 1 \
--config_name <path/to/config.json> \
--model_name_or_path gpt2 \
--num_tiles 4 \
--o0 \
--pef <name_of_pef>

SN_NUM_THREADS=32 python tutorial_train.py run \
--inference \
--max_seq_length 1024 \
--max_tokens_to_generate 20 \
-b 1 \
--data_dir <path/to/prompts> \
--checkpoint_name <path/to/checkpoint> \
--model_name_or_path gpt2 \
--pef <path/to/pef>

Compile Command Training Command

Copyright © 2023 SambaNova Systems

Some Results

REVIEW: Susie Q. is one of those rare, and sweet movies that give you a warm feeling. It's bittersweet, but wholesome, and it's

characters are fun, and captivating. At first, I thought the movie would be the cliché cuddly movie that would bore me after five

minutes, but was I wrong. It made me tear up at times, and it's plot was enticing, making me root for the good guys. I loved the movie,

and still remember it today, 9 years later!! I recommend it highly to ANYONE, and the movie is family oriented, so you won't have to

worry about unsuitable content. Truly, if Disney would show more movies that are up to par as Susie Q., it would be the most popular

family oriented channel in the world. Now if only Disney would show it just ONE more time!^_^ Go Susie Q.!! QUESTION: Is this review

positive or negative?

positive<|endoftext|>

REVIEW: I love his martial arts style, it is quick, close up and oh so fast, but it seems like his movies are becoming more and more

crime based lifestyle quality and less meaning...I thought he was out to bring forth a deeper message. At least some of the movies had a

hidden meaning or agenda this one had some good redeeming qualities of the character but the rest was so far off. I was very

disappointed. The martial arts is also suffering. I am hoping to see a more devoted Segal in his future films. This movie also lacks in

keeping the story line going, there are too many gaps so the thought is lost. Too many things are cryptic without a solution. QUESTION:

Is this review positive or negative?

negative<|endoftext|>
