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INTRODUCTION
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This talk highlights a subset of the AI/ML efforts within the Cosmology group at 
Argonne.  

Common themes here are:  
• Synthetic/simulation data to enhance/replace real astronomical 

observations. 
• Bayesian/probabilistic schemes rather than point-predictions. 
• Explainability of the ML algorithms. 

Different case studies: 
• Generative models using Gaussian Processes, PCA, Auto-encoders 
• Probabilistic classification and regression 
• Image processing pipelines for de-noising, de-blending etc.



WHY USE SYNTHETIC DATA?
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• Typically the training and testing data come from the same ‘set’  
• Assumes completeness, representation 
• Captures data-prior, biases in the training set 

• In addition, data dealt in industry tends to be ‘low-cost’, and available 
in large volumes (required to train highly parametrized models like 
Deep NNs) 

• Scientific Data on the other hand typically are high cost, have to be 
carefully sampled and may be incomplete or not-representative.



Data size and complexity: Usually requires a 
large amount of high fidelity representative 
data - particularly in methods that are feature 
agnostic before training (like deep CNNs) 

• Tricks: Transfer learning, Data 
augmentation, space filling/active 
sampling, realistic synthetic data. 

Data quality: Observed data also tends to be 
incomplete/biased (in the parameter space of 
interest), noisy, and systematics may not be 
obvious.  

GARBAGE IN, GARBAGE OUT
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I am NOT amused

TRAIN

TEST



STUDYING THE COSMOS
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Credit: nasa.gov

Recent progress in Cosmology a largely data-driven  
- due to numerical and observational data

Credit: eso.org
Zavala, J.; Frenk, C.S. Dark Matter Haloes and 
Subhaloes. Galaxies 2019, 7, 81.

https://map.gsfc.nasa.gov/media/080998/index.html
https://www.eso.org/public/images/eso0419d/


Motivation:  
• Unfortunately we 

only have one 
observable 
Universe  

• Expensive 
Cosmological 
simulations or 
summary statistics 
are essential

SYNTHETIC DATA FOR COSMOLOGICAL 
PARAMETER CALIBRATION
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Outer Rim simulation: youtu.be/rtBlZJ6gNiI

https://youtu.be/rtBlZJ6gNiI


FAST GAUSSIAN PROCESS EMULATORS
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Sampling schemes for 
synthetic data is very 
important while dealing with 
expensive simulations 

Cosmic Emu - Heitmann et al 2006 and others: hep.anl.gov/cosmology/CosmicEmu)

 Motivation: 
Simulations themselves can be very expensive, one may 
replace their summary statistics with cheap emulators 

http://www.hep.anl.gov/cosmology/CosmicEmu/


GP-PCA EMULATION PIPELINE
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Experimental design: 
space filling latin 
hypercube

Run training 
simulations, 
generate summary 
statistics

PCA reduction, 
GP training

Emulation at new parameters, 
used in an inference pipeline 

χ(k; θ) =
pn

∑
i=1

ϕi(k)wi(θ) + ϵ

PCA bases  GP weights  Error

Emulation:



GP EMULATION WITH VARIATIONAL AUTO-ENCODERS 
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Z1

Z2

w(θ) = GP(μ(x), k(x, x′ ); θ)

Unsupervised VAE learning

Supervised GP/ 
representation learning

Emulation = Profit !!



10

P(θ |D) ∝ ℒ(D |θ)P(θ)

ℒ(D |θ) ∝ exp −
1
2 ∑

i, j
(D − f (θ))i

C−1
ij (D − f (θ))j

MCMC sampling 
for PLACK/WMAP 
data 

GP-VAE emulated spectra 
as a forward model

NR, Mickael 
Binois et al

BAYESIAN INFERENCE WITH EMULATORS



SUITE OF EMULATORS!

Emulators created for 
▪ Dark matter power 

spectrum 
▪ Dark energy evolution 

reconstruction from 
supernovae data,  

▪ Halo mass function,  
▪ Modified gravity 

observables,  
▪ Weak lensing observables,  
▪ CMB power spectra etc.
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Fisher analysis for beyond General Relativity 
cosmologies (NR, Georgios Valogiannis et al: 
arxiv:2010.00596)

Weak lensing shear 
power spectra emulation 
(NR, Patricia Larsen et al) 

https://arxiv.org/abs/2010.00596


SUITE OF EMULATORS!

▪Deep learning, especially convolution 
operation enables feature-important 
extraction and non-linear compressions
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Galaxy image emulation (Claire Guilloteau, NR et al)

Latent-space time evolution for inviscid 
fluid flow (Romit Maulik, Themistoklis 
Botsas, NR et al: arxiv:2007.12167)

3D cosmic density field reconstruction 
 (Xiaofeng Dong, NR et al)

https://arxiv.org/abs/2007.12167


WHY USE SYNTHETIC DATA?
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• Tractable fundamental physics principles may help in synthetic data 
generation. 

Simulated strong lens image 
to match SPT cluster 
observations taken with the 
MegaCAM camera on 
Magellan, in collaboration L. 
Bleem, M. Florian, S. Habib, 
M. Gladders, N. Li, S. 
Rangel N. 
Li et al., arxiv:1511.03673



SYNTHETIC DATA FOR STRONG LENSING ANALYSIS
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Motivation:  
• Discrepancy with current amount of observed data vs future 

data 
• Observed data is/will be a highly imbalanced dataset 
• Relative ease of modeling with physical toy models

Credit: Nan Li. Strong Lenses created with the line of sight galaxies



GALAXY-SCALE STRONG LENSING CATALOG 

15

Outer-rim simulation 

CosmoDC2 
synthetic sky catalog 
(arXiv:1907.06530)

Central galaxies and 
high redshift sources 
from cosmoDC2

Mass model for lens galaxy 
(Singular Isothermal Ellipsoid, 
Collett 2015), PSF and noise

Galaxy modeling, 
Ray tracing,  
lensing pipeline



INTERPRETABLE LEARNING PIPELINES 
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Detection YES

DeblendingDe-noising

Yes

NO

Regression

Added bonus:  
• Synthetic data allows one to train modular pipelines that enable 

better control over systematics than end-to-end training methods 
• Increase in classification and regression accuracy



INTERPRETABLE STRONG LENS END-TO-END ANALYSIS 
PIPELINE 
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Sandeep Madireddy, Nan Li, 
NR et al: arxiv.org:1911.03867

https://arxiv.org/abs/1911.03867
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Variational 
Information 
Bottleneck  and 
representation 
learning

Uncertainty quantification 
for classification
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Variational Inference for Einstein 
radius, axis ratio, position angle for 
Strong Lensing problem (Sandeep 
Madireddy, Nan Li, NR, James 
Butter et al)

Monte-Carlo Dropout uncertainty 
quantification for galaxy peculiar velocity 
estimation  (Yuyu Wang, NR et al 
arxiv.org:2010.03762

SEVERAL APPROACHES TO UQ IN ML

Hamiltonian Monte Carlo sampling for 
weights of Neural Networks (Andrew 
Hearin, NR et al)

https://arxiv.org/abs/2010.03762


SYNTHETIC TRAINING IN PHOTOMETRIC REDSHIFT 
ESTIMATION 

•Development of robust generative modeling tool GALAXPY for emulating SEDs 
using a Gaussian Processes 
•Capture effects of star formation histories, metallicities, initial mass functions, 

dust attenuations and emission line ratios. 
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 Motivation: 
Real data maybe biased, gaps in color space, and fewer high-z galaxies.

Added bonus:  
Ability to create large amount of training samples, with uncertainties in the 
sample.



BAYESIAN NEURAL NETWORKS: APPLICATION IN 
PHOTOMETRIC REDSHIFT ESTIMATION 
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▪Mixed Density Network for mapping 
LSST-like color magnitudes to 
redshifts 
▪Allows for Uncertainty 

quantification in photo-z estimates 
▪Allows for degeneracy in the data 

using Gaussian Mixture models 
▪For comparison, training done 

with observed data and synthetic 
data (large number of training 
samples)

p(zpred |colors) = ∑
i

πi𝒩(μi, σ2
i )



PHOTOMETRIC REDSHIFT ESTIMATION: OBSERVED 
AND SYNTHETIC TRAINING 
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Photo-z estimates for SDSS galaxies. The synthetic training results in 
fewer prediction outliers compared to the SDSS-trained model. Fewer data 
in larger z: error bars are larger, predictions are worse. 

NR, Jonas Chaves-Montero, 
Arindam Fadikar et al



DATA RECOVERY USING PROBABILISTIC NEURAL 
NETWORKS
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Romit Maulik, Kai Fukami, NR et al arxiv:2005.04271

Sea surface temperature

Fluid flow models

Madeline Lucey, Yuan-Sen 
Ting, NR, Keith Hawkins, 
arxiv:2002.02961

Extracting a pristine 
sample of red clump 
stars in the Milky Way 

https://arxiv.org/abs/2005.04271
https://arxiv.org/abs/2002.02961


• Synthetic datasets are sometimes a necessity (cosmological simulations), 
sometimes a convenience (photometric data analysis) 

• Careful experimental design, robust data creation, extensive validations are 
all required while dealing with synthetic data. 

• Interpretable, Uncertainty quantified models are still very important, probably 
even more so while using synthetic data in training.

CONCLUSIONS
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