Pulse-level Control and Dynamics of Qudit Gates

Sep 20, 2022, 4:15 PM
30m

Speaker

Baris Ozguler (Fermi National Accelerator Laboratory, USA)

Description

Qudit gates for high-dimensional quantum computing can be synthesized with high precision using numerical quantum optimal control techniques. Large circuits are broken down into
modules and the tailored pulses for each module can be used as primitives for a qudit compiler. Application of the pulses of each module in the presence of extra modes may decrease their effectiveness due to crosstalk. We address this problem by simulating qudit dynamics for circuit quantum electrodynamics (cQED) systems. Our results show that the frequency shifts due to crosstalk yield extremely stringent bounds on interaction parameters and spectator mode occupations. Here, we provide an experimentally relevant fidelity scaling formula that is independent of the gate type and can be used as a bound on the fidelity decay. The estimated scaling of the fidelity matches the scaling calculated using our numerical results.

Presentation Materials

There are no materials yet.