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Uncertainty quantification in DL

* Deep learning has gained tremendous attention in many field

* Deep neural network model:
- What does the output “probabilities” tell us?
- How to tell if the model is making sensible predictions or giving
random answers?

- Does the model know what it doesn’t know?

* Uncertainty quantification can help us understand

if our model is confident




Out of distribution data

» Train: cats vs dogs images

» During testing, a bird image enters
- What would the model tell us?




Out of distribution data

» A sketch of softmax input and output for an idealized binary classification problem
- Training data is given between the dashed grey lines
- Function point estimate is the solid black line
- Dashed red line is a point far from the training data

» Without uncertainty, a bird image can be classified as cat/dog with probability 1

Figure from paper: arxiv 1506.02142
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https://arxiv.org/pdf/1506.02142.pdf

Types of uncertainties

» Epistemic uncertainty (also referred to
as model uncertainty):
- Describes what the model doesn’t
know due to limited data and
knowledge on model parameters

- Reduces when having more data

» Aleatoric uncertainty:
- Raises from the natural stochasticity
of observations

- Non-reducible

Data with uncertainty

1 ==« real function

® training data

High Aleatoric Uncertainty

. Low Aleatoric Uncertainty

High Epistemic Uncertainty




Types of uncertainties

» Epistemic uncertainty (also referred to
as model uncertainty):
- Describes what the model doesn’t

know due to limited data and

knowledge on model parameters

- Reduces when having more data Can be used to induce predictive
uncertainty:

» Aleatoric uncertainty: - the confidence we have in a prediction

- Raises from the natural stochasticity
of observations

- Non-reducible




Uncertainty quantification methods

Bayesian Neural Network

- Each weight in the neural net is given a prior and a Gaussian uncertainty

- Fit both weights and model uncertainty

NSO
- Posterior will be driven over model parameters A\ A0
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BNN models offer a mathematically grounded s N\ :‘:\J
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framework to quantify model uncertainty, and have @ A )

been referred as a gold standard. (BAYES' THEOREM)

However the models:
- Double the number of parameters in a network,
need more time for training p(pammeter,mta):"(mtalm+w
- Cost a prohibit computational resources

- Difficult to use




Uncertainty quantification methods

MC Dropout uncertainty quantification (DUQ) method

- Dropout

* A standard technique for training neural networks

* Avoids over-fitting by randomly deactivating

connections between nodes of neural network

during the training process

* All nodes exist during testing

Present with
probability p

(a) At training time

Always
present
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(b) After applying dropout.



https://arxiv.org/pdf/1506.02142.pdf

Uncertainty quantification methods

MC Dropout uncertainty quantification (DUQ) method
* No change of either the training or the model

* No extra cost except to enable Dropout during testing

Training steps

p(l'(x.(-)))l

p(f(x,0))




How do we measure the quality of uncertainty?

» Multiple evaluations on each object with Dropout enabled to get image posterior probability
distribution

- Calculate mean and asymmetric 68% Confidence Interval (CI)

» Perform a closure test by comparing the probability to the accuracy of correctly classity
an image
- Significance calculation:

Kirue — Mialse

significance =
\/ (ﬂtme o CI])2 + (qualse o CI])2

- Image’s probability which correspond to a correct categorization is calculated using

the cumulative probability distribution over the calculated significance
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The MNIST database

The MNIST database:
- A database of handwritten, black and white digits from 0-9
- Has a training set of 60k images, and a testing set of 10k images

- All grey images are normalized to fit into a 28 x 28 pixel box

0 0O00006QCQaop0Oo0CZ2 000
/A U R Y AP 2 e U Y B BV
Ad 2LAIIP2IFFA2122A2LA
3333333533383 333
Hg ¢4 4949 Y Y 544 4§\ ¥4
59358535 SSHFS5 TS5 855459
b &G 6 6 G & obgc e ¢ 6 6 6 b
©77 77707200 2% 7 77
¥ 3 2 8 %8 P 8 P YT S & ¢ 9
7 99999%199%49944919 9

11




Training

» Trained the MINIST database for multi-classification studies
- With a Convolutional Neural Network (CNN) which contains 2 hidden-layers with Dropout enabled

» Modern CNN can easily achieve > 99% accuracy 010" el
- Great for postal mail sorting and bank check processing 2 j;iz
but not very interesting for uncertainty quantification 05310
studies —
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» Use simplified network structure and stopped training at
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Stability

» Number of evaluation times for each image are important for the method
- In principle, the more the better, but it costs more computational resources

- Find a point where all the image accuracies, mean/median/mode values are stable
» Mode can be somewhat fluctuated for some images, while mean/median have similar value and

reaches the stable point with 3k evaluations
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Closure test

» For CNN with 2x2 convolution layers, the calculated probability accurately reflects how likely the
predict if going to be correctly
» Across the full range of images, DUQ method captures the uncertainty well

» Small difference noticed at sample accuracy level
- Observed 52.4% vs calculated 52.5%
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o
L

calculated probability = cdf(significance)

Calculated Probability

o
FS

# correctly classified times

observed probability = .
# of evaluations
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Different dropout rates

» How the posterior would differ with different pull = Pi — Hirue — MAP
20
> c
dropout rates: S . trie R
- Varies dropout rate in the training
- Set dropout rate in the testing same as in ] I N ]
the training
S 0-
Q.
-1 A -5  _"-\—@(/M = = B B
» Maximum a posterioti (MAP) varies below
—
p=0.5, stay constant above
» 1o and 20 bands varies .
0.0 0.2 0.4 0.6 0.8

Dropout Rate
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Model dependency
» Tested the DUQ method on different
NN models and activations
- Some model dependency is observed
- But worked at some level with all the .. o] | | | | | |
models we tested S e ' ' T ' '
Logistic

0.0 0.2 0.4 0.6 0.8 1.0 Image accuracy




Systematic mismodeling capture

» Trained a model on the nominal MNIST database

» Test performed by rotating images in the testing

dataset by 6° (0 € (0,360))

- Sample accuracy drops because of mismodeling
- But even with systematic mismodeling causing

larger than 60% shift in sample accuracy, DUQ
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BNN vs DUQ

. s : (BAYES’ THEOREM)
» No statistical foundation for why DUQ should work

- In order to “validate” the method, a comparison performed
between DUQ and BNN

P(Data | Parameter) x P(Parameter)

P(Parameter | Data) = P(Data)
ata

» BNN

- p(data) 1s computed via integrating over all possible parameter

values: P(x) = J P(x, 0)do
®

- Impossible in closed form for non-trivial problems,
approximation needed - probabilistic programming
=== Not normalised target distribution (known) - --=-- Normalised target distribution (unknown) Approximation (computed)
» Pyro used for BNN model training
- Built on top of PyTorch

- Scalable, flexible, universal

M,,H,0,0, M, < H,-h. aa_ﬁL (sameforp,, 0,,0,) p*,, pu¥*,, 0%, 0%,
1
[ J [ J [ J
- Has Stochastic Variational Inference
Initialisation of the family parameters Iteratively compute derivative of KL divergence The best approximation among the chosen

and computation of KL divergence between with respect to parameters to update and make a family is then obtained (up to the efficiency of
corresponding approximation and raw target step in the opposite direction for these parameters the optimisation process and local minima) 1 8




BNN vs DUQ

True Class
0.14 1 —— Dropout
——  BNN

» Comparison done between BNN and DUQ

- Models:
* Same number of layers 012 -
* Same number of nodes and dropout rate in each layer
A N R

* Normal distribution is applied as prior on weight of

each node in BNN model
* Trained on same dataset with same epochs

0.08 -

Density

0.06 -

0.04 -

- Results
* Poisson uncertainty added on truth class as error bar

* DUQ prediction tend to have better agreement with

0.02 -

the truth class
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The Standard Model

» The Standard Model (SM) of particle physics
- A mathematical framework which describes
the strong, weak and electromagnetic forces

- Incorporates all directly observed elementary

particles to date

» Limitation of the SM

- Dark Matter (DM)

- Matter-antimatter asymmetry

three generations of matter
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The Large Hadron Collider

» Lies in a tunnel 27 kilometers in circumference, 175 meters beneath the France-Switzerland border

» Protons accelerated to 0.999999990 the speed of light
» Two opposing particle beams of protons at up to 6.5 tera electron volts (TeV) per nucleon, with
center-of-mass energy at 13 TeV collision energy were smashed in LHC machine

» Collide at 4 primary points where detectors are situated

"

ALICE




The ATLAS detector

» A toroidal LHC Apparatus (ATLAS) is one of two
general purpose detectors at LHC

» Aims to measure signals resulting from pp collision

LAr hadronic end-cap and
forward calorimeters

Pixel detector

to cover vast range of analyses

LAr electromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation fracker

Semiconductor tracker

Soecrometer » ATLAS is a many-layered detector
| - Inner detector: describes charged particle
e trajectory through the detector and magnetic
filed
Calorimetr 14 - Electromagnetic calorimeter: electromagnetic
e signatures (photons, electrons)
el oo oo - - - - -
/ B o - Hadronic calorimeter: particles that interact via
Electromagnetic ,': .a"'
- o ooy the strong force (quarks, gluons)
Solenoid magnet : .," '.;' .
T {Eak i K - Muon detector: dedicated subsystem for
racking Tracker — »
o R .
) iite:/ Fatles o detectlng muons 50




B-tagging in ATLAS

The identification of jets containing B-hadrons (b-tagging) is essential for many physics in ATLAS

- For example: searching for dark matter
q X (my) q

Displaced
Tracks

Vertex
B-tagging rely on B-hadron properties:
- Secondary vertex from primary vertex due to its long
life time
- Large B-hadron mass
- Large impact parameter
- Semi-leptonic decay of B-hadron
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B-tagging algorithm

» Deep learning technique is used for b-tagging

- 8 hidden layers

- Adaptive Momentum (Adam) optimiser to minimise categorical cross-entropy loss
Activation function: ReLU and Softmax (only for output layer)

Dropout applied at each layer
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B-tagging uncertainties

» B-tagging calibrations obtained in the forms of data-to-simulation scale factors (SF)

.. cdat
» Uncertainties from data are added to the SFs baw?

SFow = e
bw

» At pT > 400 GeV

- Not enough statistics in data

ATL PHYS-PUB- 2021 -00

—_—

__ ATLAS Preliminary _
s =13 TeV, 139 fb”", particle flow jets
DLA1r, Fixed Cut, eM© =77%

R
N

SF in this region defined as:

SF;, (pT) := SF,, (pT,ref) ' Rllzllc(pT;pT,ref)

T T 7|

i

- Uncertainties:

02 (SFu(pr)) = 02 (SFu(pr.ref)) + 0 (R (T3 PT1et))

b-tagging efficiency SF
o

0.8
= rel(SFb (P ref)) + O, extrap(pT;pT,ref) E —+— Scale factor .
0.6~ — Smoothed and extrapolated scale factor —
* An additional extrapolation uncertainty - Data-based uncertainty -
determined by modifying DNN input variables 041 -1 Extrapolation uncertainty B
is added - which explodes as pT increases T BRT:

©
-
®
)
S

25



https://cds.cern.ch/record/2753444/files/ATL-PHYS-PUB-2021-003.pdf

B-tagging uncertainties

» DUQ can be tried as a new approach, as the method
Can be potentially used to capture uncertainties in any classification case as long as Dropout is
enabled in the training

. . _y ATL-COM-PHYS-2019-21
Can capture uncertainties for each jet regardless of statistics
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» Physics analysis, for example searching for DM Z’ decays X -

to bb can directly benefit from reducing the b-tagging
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https://arxiv.org/abs/1910.08447

DUQ application to b-tagging

» Repeat the MINIST procedure of calculating probability from significance with Dropout
enabled during evaluation
» Evaluated each jet multiple times

- 10k evaluations for each are enough

0.7 A

T 1_1
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DUQ application to b-tagging

» Calculated vs Observed probability
- Quite diagonal, indicates calculated probability well reflect jet accuracy

- The difference is centered at 0 with a width of 2%
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Mean vs Median

» Using median capture a better quality of the uncertainty than using mean value of the DLI

distribution for each jet
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DUQ application to b-tagging

» DUQ method performed to get b-tagging efficiency as a function of jet transverse momentum

» Sample jet transverse momentum up to 250 GeV, within ~7% uncertainty noticed
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Summary

» Using Dropout to capture uncertainty
- Enabling Dropout during evaluation for multiple time samples the posterior probability
distribution
- Calculate per object significance and categorization probability using the median and

asymmetric 68% confidence interval

» Method tested on the MNIST database
- Calculated probability accurately predicts image and sample accuracies
- Bias test performed to verify the method can also accurately accounts for systematic

mismodeling

» Preliminary studies done on the application to ATLAS b-tagging

- Promising uncertainty capture
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